題目列表(包括答案和解析)
設(shè)點
是拋物線![]()
![]()
的焦點,
是拋物線
上的
個不同的點(![]()
).
(1) 當(dāng)
時,試寫出拋物線
上的三個定點
、
、
的坐標,從而使得
;
(2)當(dāng)
時,若
,
求證:
;
(3) 當(dāng)
時,某同學(xué)對(2)的逆命題,即:
“若
,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù)
,試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè)
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因為
,所以
,
故可取![]()
![]()
滿足條件.
(2)設(shè)
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因為![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個當(dāng)
時,該逆命題的一個反例.(反例不唯一)
② 設(shè)
,分別過
作
拋物線
的準線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因為上述表達式與點
的縱坐標無關(guān),所以只要將這
點都取在
軸的上方,則它們的縱坐標都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質(zhì)上只需構(gòu)造滿足條件且
的一組
個不同的點,均為反例.)
③ 補充條件1:“點
的縱坐標
(
)滿足
”,即:
“當(dāng)
時,若
,且點
的縱坐標
(
)滿足
,則
”.此命題為真.事實上,設(shè)
,
分別過
作拋物線
準線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補充條件2:“點
與點![]()
為偶數(shù),
關(guān)于
軸對稱”,即:
“當(dāng)
時,若
,且點
與點![]()
為偶數(shù),
關(guān)于
軸對稱,則
”.此命題為真.(證略)
已知函數(shù)
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當(dāng)
時,
,則
。
依題意得:
,即
解得
第二問當(dāng)
時,
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當(dāng)
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時,
,令
得![]()
當(dāng)
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當(dāng)
時,
.當(dāng)
時,
,
最大值為0;
當(dāng)
時,
在
上單調(diào)遞增!
在
最大值為
。
綜上,當(dāng)
時,即
時,
在區(qū)間
上的最大值為2;
當(dāng)
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。
(1)f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=
-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-
,又a<0,
∴a的取值范圍是![]()
已知曲線
上動點
到定點
與定直線
的距離之比為常數(shù)
.
(1)求曲線
的軌跡方程;
(2)若過點
引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線
的左頂點
為圓心作圓
:
,設(shè)圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點
作直線
的垂線,垂足為D.
代入坐標得到
第二問當(dāng)斜率k不存在時,檢驗得不符合要求;
當(dāng)直線l的斜率為k時,
;,化簡得
![]()
第三問點N與點M關(guān)于X軸對稱,設(shè)
,, 不妨設(shè)
.
由于點M在橢圓C上,所以
.
由已知
,則
,
由于
,故當(dāng)
時,
取得最小值為
.
計算得,
,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:![]()
設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為
,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因為
,所以
,
于是
,
,
![]()
所以
,當(dāng)
,且
時,
取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因為![]()
所以![]()
![]()
![]()
所以,![]()
對數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對于所有的
,
的最大值為![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com