欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.在分別是角A.B.C的對邊..且 (1)求角B的大小, 查看更多

 

題目列表(包括答案和解析)

分別是角A、B、C的對邊,,且

(1)求角B的大小;

(2)設(shè)的最小正周期為上的最大值和最小值.

 

查看答案和解析>>

分別是角A、B、C的對邊,,且
(1)求角B的大。
(2)求sin A+sin C的取值范圍.

查看答案和解析>>

分別是角A、B、C的對邊,,且
(1).求角B的大;
(2).求sin A+sin C的取值范圍.

查看答案和解析>>

分別是角A、B、C的對邊,,且
(1)求角B的大小;
(2)設(shè)的最小正周期為上的最大值和最小值.

查看答案和解析>>

分別是角A、B、C的對邊,,

 

  (1)求角B的大;

  (2)設(shè) 上的最大值和最小值.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由,

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時,

      

       當(dāng),

           12分

18.解:(1)依題意,甲答對主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因為事件A、B相互獨立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過點E作EG交CF于G,

        <strong id="gkey4"><samp id="gkey4"></samp></strong>

        <table id="gkey4"><ul id="gkey4"></ul></table>

        //

               所以AD=EG,從而四邊形ADGE為平行四邊形

               故AE//DG    4分

               因為平面DCF, 平面DCF,

               所以AE//平面DCF   6分

           (2)過點B作交FE的延長線于H,

               連結(jié)AH,BH。

               由平面

        <dl id="gkey4"></dl><progress id="gkey4"></progress>
        <dl id="gkey4"></dl>

               所以為二面角A―EF―C的平面角

              

               又因為

               所以CF=4,從而BE=CG=3。

               于是    10分

               在

               則,

               因為

          1.        解法二:(1)如圖,以點C為坐標(biāo)原點,

                   建立空間直角坐標(biāo)系

                   設(shè)

                   則

                  

                   于是

             

             

             

             

            20.解:(1)當(dāng)時,由已知得

                  

                   同理,可解得   4分

               (2)解法一:由題設(shè)

                   當(dāng)

                   代入上式,得     (*) 6分

                   由(1)可得

                   由(*)式可得

                   由此猜想:   8分

                   證明:①當(dāng)時,結(jié)論成立。

                   ②假設(shè)當(dāng)時結(jié)論成立,

                   即

                   那么,由(*)得

                  

                   所以當(dāng)時結(jié)論也成立,

                   根據(jù)①和②可知,

                   對所有正整數(shù)n都成立。

                   因   12分

                   解法二:由題設(shè)

                   當(dāng)

                   代入上式,得   6分

                  

                  

                   -1的等差數(shù)列,

                  

                      12分

            21.解:(1)由橢圓C的離心率

                   得,其中,

                   橢圓C的左、右焦點分別為

                   又點F2在線段PF1的中垂線上

                  

                   解得

                      4分

               (2)由題意,知直線MN存在斜率,設(shè)其方程為

                   由

                   消去

                   設(shè)

                   則

                   且   8分

                   由已知,

                   得

                   化簡,得     10分

                  

                   整理得

            * 直線MN的方程為,     

                   因此直線MN過定點,該定點的坐標(biāo)為(2,0)    12分

            22.解:   2分

               (1)由已知,得上恒成立,

                   即上恒成立

                   又當(dāng)

                      4分

               (2)當(dāng)時,

                   在(1,2)上恒成立,

                   這時在[1,2]上為增函數(shù)

                    

                   當(dāng)

                   在(1,2)上恒成立,

                   這時在[1,2]上為減函數(shù)

                  

                   當(dāng)時,

                   令 

                   又 

                       9分

                   綜上,在[1,2]上的最小值為

                   ①當(dāng)

                   ②當(dāng)時,

                   ③當(dāng)   10分

               (3)由(1),知函數(shù)上為增函數(shù),

                   當(dāng)

                  

                   即恒成立    12分

                  

                  

                  

                   恒成立    14分