題目列表(包括答案和解析)
已知
,
是橢圓![]()
左右焦點(diǎn),它的離心率
,且被直線
所截得的線段的中點(diǎn)的橫坐標(biāo)為![]()
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)
是其橢圓上的任意一點(diǎn),當(dāng)
為鈍角時(shí),求
的取值范圍。
【解析】解:因?yàn)榈谝粏栔校脵E圓的性質(zhì)由
得
所以橢圓方程可設(shè)為:
,然后利用
得
得
橢圓方程為![]()
第二問中,當(dāng)
為鈍角時(shí),
,
得![]()
所以
得![]()
解:(Ⅰ)由
得
所以橢圓方程可設(shè)為:![]()
3分
得
得
橢圓方程為
3分
(Ⅱ)當(dāng)
為鈍角時(shí),
,
得
3分
所以
得![]()
已知中心在原點(diǎn),焦點(diǎn)在
軸上的橢圓
的離心率為
,且經(jīng)過點(diǎn)![]()
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存過點(diǎn)
(2,1)的直線
與橢圓
相交于不同的兩點(diǎn)
,滿足
?若存在,求出直線
的方程;若不存在,請(qǐng)說明理由.
【解析】第一問利用設(shè)橢圓
的方程為
,由題意得![]()
解得![]()
第二問若存在直線
滿足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本
與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以![]()
所以
.解得。
解:⑴設(shè)橢圓
的方程為
,由題意得![]()
解得
,故橢圓
的方程為
.……………………4分
⑵若存在直線
滿足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本
與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以![]()
所以
.
又
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即
,
所以![]()
.
即
.
所以
,解得
.
因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
給定下列結(jié)論:
①在區(qū)間
內(nèi)隨機(jī)地抽取兩數(shù)
則滿足
概率是
;
②已知直線l1:
,l2:x- by + 1= 0,則
的充要條件是
;
③為了解一片經(jīng)濟(jì)林的生長(zhǎng)情況,隨機(jī)測(cè)量了其中100株樹木的底部周長(zhǎng)(單位:cm)。根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如下),那么在這100株樹木中,底部周長(zhǎng)小于110cm的株數(shù)是70株;
④極坐標(biāo)系內(nèi)曲線
的中心
與點(diǎn)![]()
的距離為
.
以上結(jié)論中正確的是_____________________(用序號(hào)作答)
![]()
設(shè)橢圓
的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
如圖,
分別是橢圓
:
+
=1(![]()
)的左、右焦點(diǎn),
是橢圓
的頂點(diǎn),
是直線
與橢圓
的另一個(gè)交點(diǎn),![]()
![]()
=60°.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)已知△![]()
的面積為40
,求
的值.
![]()
【解析】 (Ⅰ)由題![]()
![]()
=60°,則
,即橢圓
的離心率為
。
(Ⅱ)因△![]()
的面積為40
,設(shè)
,又面積公式
,又直線
,
又由(Ⅰ)知
,聯(lián)立方程可得
,整理得
,解得
,
,所以
,解得
。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com