題目列表(包括答案和解析)
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對任意
,
,不等式
恒成立,求實數(shù)
的取值范圍.
【解析】第一問利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問中,若對任意
不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對任意
不等式
恒成立,
問題等價于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以
; ............6分
![]()
當(dāng)b<1時,
;
當(dāng)
時,
;
當(dāng)b>2時,
;
............8分
問題等價于![]()
........11分
解得b<1 或
或
即
,所以實數(shù)b的取值范圍是
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當(dāng)
,即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時,同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時,函數(shù)
的圖象恒在直線
下方.
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項公式
;
(2)若不等式
對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當(dāng)
時,
;當(dāng)
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價于
,
當(dāng)
時,
;當(dāng)
時,
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時,
,成立.
假設(shè)當(dāng)
時,不等式
成立,
當(dāng)
時,
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項公式
, …………10分
, …………12分
所以對
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com