題目列表(包括答案和解析)
如圖,已知直線(xiàn)
(
)與拋物線(xiàn)
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)
是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線(xiàn)
的切線(xiàn)
,直線(xiàn)
交
軸于點(diǎn)
,以
、
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線(xiàn)上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)
所在的定直線(xiàn)為
, 直線(xiàn)
與
軸交點(diǎn)為
,連接
交拋物線(xiàn)
于
、
兩點(diǎn),求△
的面積
的取值范圍.
![]()
【解析】第一問(wèn)中利用圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線(xiàn)
的距離
.
即
,解得
(
舍去)
設(shè)
與拋物線(xiàn)的相切點(diǎn)為
,又
,得
,
.
代入直線(xiàn)方程得:
,∴
所以
,![]()
第二問(wèn)中,由(Ⅰ)知拋物線(xiàn)
方程為
,焦點(diǎn)
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點(diǎn)的切線(xiàn)
的方程為
.
令
,得切線(xiàn)
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線(xiàn)![]()
第三問(wèn)中,設(shè)直線(xiàn)
,代入
得
結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線(xiàn)
的距離
.
即
,解得
(
舍去). …………………(2分)
設(shè)
與拋物線(xiàn)的相切點(diǎn)為
,又
,得
,
.
代入直線(xiàn)方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線(xiàn)
方程為
,焦點(diǎn)
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點(diǎn)的切線(xiàn)
的方程為
.
令
,得切線(xiàn)
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線(xiàn)
上.…(2分)
(Ⅲ)設(shè)直線(xiàn)
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是![]()
如圖,三棱柱
中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)。
![]()
(I) 證明:平面
⊥平面![]()
(Ⅱ)平面
分此棱柱為兩部分,求這兩部分體積的比.
【命題意圖】本題主要考查空間線(xiàn)線(xiàn)、線(xiàn)面、面面垂直的判定與性質(zhì)及幾何體的體積計(jì)算,考查空間想象能力、邏輯推理能力,是簡(jiǎn)單題.
【解析】(Ⅰ)由題設(shè)知BC⊥
,BC⊥AC,
,∴
面
, 又∵![]()
面
,∴
,
由題設(shè)知
,∴
=
,即
,
又∵
, ∴
⊥面
, ∵![]()
面
,
∴面
⊥面
;
(Ⅱ)設(shè)棱錐
的體積為
,
=1,由題意得,
=
=
,
由三棱柱
的體積
=1,
∴
=1:1, ∴平面
分此棱柱為兩部分體積之比為1:1
解:(Ⅰ)設(shè)
:![]()
,其半焦距為![]()
.則
:
.
由條件知
,得
.
的右準(zhǔn)線(xiàn)方程為
,即
.
的準(zhǔn)線(xiàn)方程為
.
由條件知
, 所以
,故
,
.
從而
:
,
:
.
(Ⅱ)由題設(shè)知
:
,設(shè)
,
,
,
.
由
,得
,所以
.
而
,由條件
,得
.
由(Ⅰ)得
,
.從而,
:
,即
.
由
,得
.所以
,
.
故
.
已知
,設(shè)![]()
和
是方程
的兩個(gè)根,不等式
對(duì)任意實(shí)數(shù)
恒成立;
函數(shù)
有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當(dāng)a∈[1,2]時(shí),
的最小值為3. 當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即![]()
解得實(shí)數(shù)m的取值范圍是(4,8]
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com