欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知是定義在上的偶函數(shù).且在上是增函數(shù).設(shè)...則的大小關(guān)系是 查看更多

 

題目列表(包括答案和解析)

已知:定義在(-2,2)上的偶函數(shù)f(x),當(dāng)x>0時為減函數(shù),若f(1-a)<f(a)恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

已知:定義在(-2,2)上的偶函數(shù),當(dāng)時為減函數(shù),若恒成立,則實數(shù)的取值范圍是___________。

 

查看答案和解析>>

已知為定義在上的偶函數(shù),當(dāng)時,有,且當(dāng)時,,給出下列命題:

的值為0;②函數(shù)在定義域上為周期是2的周期函數(shù);

③直線與函數(shù)的圖像有1個交點(diǎn);④函數(shù)的值域為.

其中正確的命題序號有 .

 

查看答案和解析>>

已知為定義在上的偶函數(shù),當(dāng)時,有,且當(dāng)時,,給出下列命題:

的值為;②函數(shù)在定義域上為周期是2的周期函數(shù);

③直線與函數(shù)的圖像有1個交點(diǎn);④函數(shù)的值域為.

其中正確的命題序號有 .

 

查看答案和解析>>

已知函數(shù)是定義在R上的偶函數(shù),且當(dāng)時,,則函數(shù)的大致圖象為

 

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

<blockquote id="r9fmq"></blockquote>

20090508

(2)設(shè),則,

    由正弦定理:,

       所以兩個正三角形的面積和,…………8分

              ……………10分

       ,,

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消費(fèi)總額為1500元的概率是:………………………5分

消費(fèi)總額為1400元的概率是:………6分

消費(fèi)總額為1300元的概率是:

,

所以消費(fèi)總額大于或等于1300元的概率是;……………………8分

(3),

,

所以的分布列為:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       數(shù)學(xué)期望是:!12分

19.(1)證明:因為,所以平面,

又因為,平面,

平面平面;…………………4分

(2)因為,所以平面,

所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

過點(diǎn)E作EF垂直CD且交于點(diǎn)F,因為平面平面,

所以平面

所以的長為所求,………………………………………………………6分

因為,所以為二面角的平面角,,=1,

點(diǎn)到平面的距離等于1;…………………………8分

       (3)連接,由平面,,得到

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因為平面平面,二面角的大小是!12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

      

       解得,所以,…………………3分

       所以,

      

       所以;…………………………………………………………………6分

       (2),因為,

       所以數(shù)列是遞增數(shù)列,…8分

       當(dāng)且僅當(dāng)時,取得最小值,則:,

       所以,即的取值范圍是!12分

21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

因為,所以,

得到:,注意到不共線,

所以軌跡方程為;……………5分

(2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

 

……………………………………………………7分

弦長為定值,則,即

此時……………………………………………………9分

所以當(dāng)時,存在直線,截得的弦長為,

   當(dāng)時,不存在滿足條件的直線。……………………………………………12分

22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

所以,得到;所以的取值范圍為………4分

(2)由條件得到

猜測最大整數(shù),……6分

現(xiàn)在證明對任意恒成立,

等價于,

設(shè),

當(dāng)時,,當(dāng)時,,

所以對任意的都有

對任意恒成立,

所以整數(shù)的最大值為2;……………………………………………………9分

(3)由(2)得到不等式

所以,……………………11分

所以原不等式成立。…………………………………………………………………14分