欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(3)證明:. 查看更多

 

題目列表(包括答案和解析)

(2013•眉山一模)已知函數(shù)f(x)=lnx-kx+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍;
(3)證明:
n
i=2
lni
i+1
n(n-1)
4
(n∈N+,n>1).

查看答案和解析>>

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面積為
3
,證明△ABC是正三角形.

查看答案和解析>>

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的所有棱長都相等,且側(cè)棱垂直于底面,由B沿棱柱側(cè)面經(jīng)過棱C C1到點A1的最短路線長為2
5
,設這條最短路線與CC1的交點為D.
(1)求三棱柱ABC-A1B1C1的體積;
(2)在平面A1BD內(nèi)是否存在過點D的直線與平面ABC平行?證明你的判斷;
(3)證明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù),且f(1)=1,g(1)=1
(1)求f(x),g(x)的解析式. 
(2)設h(x)=f(x)+g(x),判斷函數(shù)h(x)的奇偶性.
(3)證明函數(shù)S(x)=xf(x)+g(
12
)在(0,+∞)
上是增函數(shù).

查看答案和解析>>

已知函數(shù)f(x)=x3-x2+
x
2
+
1
4
,且存在x0∈(0,
1
2
),使f(x0)=x0
(1)證明:f(x)是R上的單調(diào)增函數(shù);
(2)設x1=0,xn+1=f(xn);y1=
1
2
,yn+1=f(yn),其中n=1,2,…,證明:xn<xn+1<x0<yn+1<yn
(3)證明:
yn+1-xn+1
yn-xn
1
2

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

  • 20090508

    (2)設,則,

        由正弦定理:,

           所以兩個正三角形的面積和,…………8分

                  ……………10分

           ,,

           所以:……………………………………12分

    18.解:(1);………………………4分

           (2)消費總額為1500元的概率是:………………………5分

    消費總額為1400元的概率是:………6分

    消費總額為1300元的概率是:

    ,

    所以消費總額大于或等于1300元的概率是;……………………8分

    (3)

    ,

    所以的分布列為:

    0

    1

    2

    3

     

    0.294

    0.448

    0.222

    0.036

    ………………………………………………11分

           數(shù)學期望是:!12分

    19.(1)證明:因為,所以平面,

    又因為平面,

    平面平面;…………………4分

    (2)因為,所以平面

    所以點到平面的距離等于點E到平面的距離,

    過點E作EF垂直CD且交于點F,因為平面平面

    所以平面,

    所以的長為所求,………………………………………………………6分

    因為,所以為二面角的平面角,=1,

    到平面的距離等于1;…………………………8分

           (3)連接,由平面,得到,

           所以是二面角的平面角,

           ,…………………………………………………11分

           又因為平面平面,二面角的大小是!12分

    20.解:(1)設等差數(shù)列的公差為,依題意得:

           ,

           解得,所以,…………………3分

           所以,

           ,

           所以;…………………………………………………………………6分

           (2),因為,

           所以數(shù)列是遞增數(shù)列,…8分

           當且僅當時,取得最小值,則:

           所以,即的取值范圍是!12分

    21.解:(1)設點的坐標為,則點的坐標為,點的坐標為

    因為,所以,

    得到:,注意到不共線,

    所以軌跡方程為;……………5分

    (2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為

    假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為

     

    ……………………………………………………7分

    弦長為定值,則,即

    此時……………………………………………………9分

    所以當時,存在直線,截得的弦長為,

       當時,不存在滿足條件的直線。……………………………………………12分

    22.解:(1)設,因為 上的增函數(shù),且,所以上的增函數(shù),

    所以,得到;所以的取值范圍為………4分

    (2)由條件得到,

    猜測最大整數(shù),……6分

    現(xiàn)在證明對任意恒成立,

    等價于,

    ,

    時,,當時,

    所以對任意的都有,

    對任意恒成立,

    所以整數(shù)的最大值為2;……………………………………………………9分

    (3)由(2)得到不等式,

    所以,……………………11分

    所以原不等式成立!14分

     

     

    <label id="sraya"></label>