欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.在等比數(shù)列中.滿足.是.的等差中項.且. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)在數(shù)列中,已知.

(1)證明數(shù)列是等比數(shù)列;(2) 為數(shù)列的前項和,求的表達式;

(3)在(2)的條件下,若存在自然數(shù)使恒成立,求的最小值.

查看答案和解析>>

(本題滿分14分)在數(shù)列中,,

(1)證明數(shù)列是等比數(shù)列;     (2)求數(shù)列的前項和;

(3) 證明不等式,對任意皆成立.

查看答案和解析>>

(本題滿分14分)在數(shù)列中,為其前項和,滿足.(I)若,求數(shù)列的通項公式;

(II)若數(shù)列為公比不為1的等比數(shù)列,求

 

查看答案和解析>>

(本題滿分14分)在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,公比為,且,

(Ⅰ)求;(Ⅱ)證明:

 

查看答案和解析>>

(本題滿分14分)

在數(shù)列中,已知

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

 

查看答案和解析>>

        <mark id="9vrnu"><tt id="9vrnu"></tt></mark>

        2009.4

         

        1-10.CDABB   CDBDA

        11.       12. 4        13.        14.       15.  

        16.   17.

        18.解:(Ⅰ)由題意,有,

        .…………………………5分

        ,得

        ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

        (Ⅱ)由,得

        .           ……………………………………………… 10分

        ,∴.      ……………………………………………… 14分

        19.解:(Ⅰ)設數(shù)列的公比為,由,.             …………………………………………………………… 4分

        ∴數(shù)列的通項公式為.      ………………………………… 6分

        (Ⅱ) ∵,    ,      ①

        .      ②         

        ①-②得: …………………12分

                     得,                           …………………14分

        20.解:(I)取中點,連接.

        分別是梯形的中位線

        ,又

        ∴面,又

        .……………………… 7分

        (II)由三視圖知,是等腰直角三角形,

             連接

             在面AC1上的射影就是,∴

             ,

        ∴當的中點時,與平面所成的角

          是.           ………………………………14分

                                                       

        21.解:(Ⅰ)由題意:.

        為點M的軌跡方程.     ………………………………………… 4分

        (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯(lián)立得:,設6ec8aac122bd4f6e

            ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

               同理RQ的方程為,求得.  ………………………… 9分

        .  ……………………………… 13分

        當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

        22. 解:(Ⅰ),由題意得,

        所以                    ………………………………………………… 4分

        (Ⅱ)證明:令,

        得:,……………………………………………… 7分

        (1)當時,,在,即上單調(diào)遞增,此時.

                  …………………………………………………………… 10分

        (2)當時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

        .                        …………………………………………14分

        由 (1) 、(2)得 .

        ∴綜上所述,對于,使得成立. ………………15分