欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若存在.試確定點(diǎn)的位置,若不存在.請(qǐng)說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

如圖, 是邊長(zhǎng)為的正方形,平面,,與平面所成角為.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說(shuō)明理由。

 

查看答案和解析>>

如圖,四棱錐的底面是直角梯形,,,平面,,

(1)求直線與平面所成角的正弦值;

(2)在線段上是否存在一點(diǎn),使得異面直線所成角余  弦值等?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

查看答案和解析>>

如圖,已知三棱柱的側(cè)棱與底面垂直,,分別是,的中點(diǎn),點(diǎn)在直線上,且;

(Ⅰ)證明:無(wú)論取何值,總有;

(Ⅱ)當(dāng)取何值時(shí),直線與平面所成的角最大?并求該角取最大值時(shí)的正切值;

(Ⅲ)是否存在點(diǎn),使得平面與平面所成的二面角為30º,若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

 如圖,在正三棱柱中,已知

(1)求直線所成角的正弦值;

(2)若的中點(diǎn),問(wèn)在棱上是否存在點(diǎn)使,若存在,試確定點(diǎn)的位置,若不存在,說(shuō)明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

如圖,四棱錐中,底面是平行四邊形,

底面

(Ⅰ)求證:;(Ⅱ)若,求二面角的余弦值;

(Ⅲ)當(dāng)時(shí),在線段上是否存在一點(diǎn)使二面角,若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由。

 

 

 

查看答案和解析>>

 

一、

        1. 20080506

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          選項(xiàng)

          A

          D

          C

          A

          A

          C

          B

          B

          C

          D

          C

          B

          二、填空題:

          13.-1    14.5   15.    16.③④      

          三、解答題:

          17.解:(Ⅰ) =……1分

          =……2分

            ……3分

           

          ……4分

            .……6分

          (Ⅱ)在中,, ,

          ……7分

          由正弦定理知:……8分

          =.    ……10分

          18.解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

          6ec8aac122bd4f6e                                     ………………4分

          (Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

          6ec8aac122bd4f6e                                      …………9分

          ξ的分布列為:

          ξ

          10

          8

          6

          4

          P

          3/28

          31/56

          9/28

          1/56

          6ec8aac122bd4f6e                                …………12分

          19. 解法一:

             (1)設(shè)于點(diǎn),∵,∴平面. 作,連結(jié),則,是二面角的平面角.…3分

           由已知得,,

          ,二面角的大小為.…6分

             (2)當(dāng)中點(diǎn)時(shí),有平面.

          證明:取的中點(diǎn)連結(jié)、,則

          ,故平面即平面.

          ,∴,又平面

          .…………………………………………12分

          解法二:以D為原點(diǎn),以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系,則

          ,,,,.…………2分

             (1),,

          ,設(shè)平面的一個(gè)法向量

          ,則.

          設(shè)平面的一個(gè)法向量為,則.

          ,∴二面角的大小為. …………6分

             (2)令

           

          由已知,,要使平面,只須,即則有

          ,得當(dāng)中點(diǎn)時(shí),有平面.…12分

          20解:(I)f(x)定義域?yàn)?一1,+∞),                        …………………2分

              由得x<一1或x>1/a,由得一1<x<1/a,

               f(x)的單調(diào)增區(qū)間為(1/a,+∞),單調(diào)減區(qū)間為(一1,1/a)…………………6分

          (Ⅱ)由(I)可知:

              ①當(dāng)0<a≤1/2時(shí),,f(x)在[1,2]上為減函數(shù),

              ………………………………8分

              ②當(dāng)1/2<a<1時(shí),f(x)在[1,1/a]上為減函數(shù),在(1/a,2]上為增函數(shù),

              …………………………………10分

              ③當(dāng)a≥1時(shí),f(x)在[1,2]上為增函數(shù),

              …………………………………12分

          21.解:(1),設(shè)動(dòng)點(diǎn)P的坐標(biāo)為,所以

          所以

          由條件,得,又因?yàn)槭堑缺龋?/p>

          所以,所以,所求動(dòng)點(diǎn)的軌跡方程 ……………………6分

             (2)設(shè)直線l的方程為,

          聯(lián)立方程組得,

          , …………………………………………8分

          , ………………………………………………10分

          直線RQ的方程為,

            …………………………………………………………………12分

          22. 解:(Ⅰ)由題意,                -----------------------------------------------------2分

          ,

                  兩式相減得.                --------------------3分

                  當(dāng)時(shí),,

          .            --------------------------------------------------4分

          (Ⅱ)∵,

          ,

                 ,

            ,

            ………

           

          以上各式相加得

          .

            ,∴.      ---------------------------6分

          .     -------------------------------------------------7分

          ,

          .

          .

                   =.

          .  -------------------------------------------------------------9分

          (3)=

                              =4+

             =

                              .  -------------------------------------------10分

                  ,  ∴ 需證明,用數(shù)學(xué)歸納法證明如下:

                  ①當(dāng)時(shí),成立.

                  ②假設(shè)時(shí),命題成立即,

                  那么,當(dāng)時(shí),成立.

                  由①、②可得,對(duì)于都有成立.

                 ∴.       ∴.--------------------12分