題目列表(包括答案和解析)
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線
的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到
,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為
…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知中心在原點,焦點在
軸上的橢圓
的離心率為
,且經(jīng)過點![]()
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存過點
(2,1)的直線
與橢圓
相交于不同的兩點
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
【解析】第一問利用設橢圓
的方程為
,由題意得![]()
解得![]()
第二問若存在直線
滿足條件的方程為
,代入橢圓
的方程得
.
因為直線
與橢圓
相交于不同的兩點
,設
兩點的坐標分別為
,
所以![]()
所以
.解得。
解:⑴設橢圓
的方程為
,由題意得![]()
解得
,故橢圓
的方程為
.……………………4分
⑵若存在直線
滿足條件的方程為
,代入橢圓
的方程得
.
因為直線
與橢圓
相交于不同的兩點
,設
兩點的坐標分別為
,
所以![]()
所以
.
又
,
因為
,即
,
所以![]()
.
即
.
所以
,解得
.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
| x2 |
| 2 |
| y2 |
| a |
| OR |
| OS |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| t2+1 |
| n |
| m |
| 1 |
| 20 |
| 1 |
| 4 |
| 1 |
| 25 |
| x2 |
| 2 |
| y2 |
| a |
| OR |
| OS |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com