題目列表(包括答案和解析)
如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標(biāo)原點).
(1)寫出
、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:
(
);
(3)設(shè)
,對所有
,
恒成立,求實數(shù)
的取值范圍.
![]()
【解析】第一問利用有
,
得到
第二問證明:①當(dāng)
時,可求得
,命題成立;②假設(shè)當(dāng)
時,命題成立,即有
則當(dāng)
時,由歸納假設(shè)及
,
得![]()
第三問
![]()
.………………………2分
因為函數(shù)
在區(qū)間
上單調(diào)遞增,所以當(dāng)
時,
最大為
,即
![]()
解:(1)依題意,有
,
,………………4分
(2)證明:①當(dāng)
時,可求得
,命題成立;
……………2分
②假設(shè)當(dāng)
時,命題成立,即有
,……………………1分
則當(dāng)
時,由歸納假設(shè)及
,
得
.
即![]()
解得
(
不合題意,舍去)
即當(dāng)
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因為函數(shù)
在區(qū)間
上單調(diào)遞增,所以當(dāng)
時,
最大為
,即
.……………2分
由題意,有![]()
.
所以,![]()
(1)求f(x)的單調(diào)區(qū)間;
(2)討論f(x)的極值.
所以f(-1)=2是極大值,f(1)=-2是極小值.
(2)曲線方程為y=x3-3x,點A(0,16)不在曲線上.
設(shè)切點為M(x0,y0),則點M的坐標(biāo)滿足y0=x03-3x0.
因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).
注意到點A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),
化簡得x03=-8,解得x0=-2.
所以切點為M(-2,-2),
切線方程為9x-y+16=0.
已知橢圓C:
的一個頂點為A(2,0),離心率為
,直線
與橢圓C交于不同的兩點M,N。
(1) 求橢圓C的方程
(2) 當(dāng)
的面積為
時,求k的值。
【解析】(1)∵
∴
∴
∴![]()
(2)![]()
![]()
∴
,![]()
∴![]()
![]()
化簡得:
,解得![]()
已知
,且
.
(1)求
的值;
(2)求
的值.
【解析】本試題主要考查了二項式定理的運(yùn)用,以及系數(shù)求和的賦值思想的運(yùn)用。第一問中,因為
,所以
,可得
,第二問中,因為
,所以
,所以
,利用組合數(shù)性質(zhì)可知。
解:(1)因為
,所以
, ……3分
化簡可得
,且
,解得
. …………6分
(2)
,所以
,
所以
,![]()
當(dāng)
有意義時,化簡
-
的結(jié)果是( )
A.2x-5 B.-2x-1 C.-1 D.5-2x
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com