題目列表(包括答案和解析)
已知橢圓
=1(其中a>b>0)與直線x+y=1交于P、Q兩點,且OP⊥OQ,其中O為坐標(biāo)原點.
(1)求
的值;
(2)若橢圓的離心率e滿足
≤e≤
,求橢圓長軸的取值范圍.
探究:本題涉及直線與橢圓的交點,對于此類問題往往聯(lián)立它們的方程消去其中的一個未知數(shù),再利用根與系數(shù)間的關(guān)系,從而得到相應(yīng)的兩個交點的坐標(biāo)間的關(guān)系,再結(jié)合題目中的其它條件將問題解決.
如圖,
分別是橢圓
:
+
=1(![]()
)的左、右焦點,
是橢圓
的頂點,
是直線
與橢圓
的另一個交點,![]()
![]()
=60°.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)已知△![]()
的面積為40
,求
的值.
![]()
【解析】 (Ⅰ)由題![]()
![]()
=60°,則
,即橢圓
的離心率為
。
(Ⅱ)因△![]()
的面積為40
,設(shè)
,又面積公式
,又直線
,
又由(Ⅰ)知
,聯(lián)立方程可得
,整理得
,解得
,
,所以
,解得
。
求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r=
=
,
故所求圓的方程為:
+
=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圓的方程為:
+
=2
………………………12分
法二:由條件設(shè)所求圓的方程為:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圓的方程為:
+
=2
………………………12分
其它方法相應(yīng)給分
已知過點
的動直線
與拋物線
相交于
兩點.當(dāng)直線
的斜率是
時,
.
(1)求拋物線
的方程;
(2)設(shè)線段
的中垂線在
軸上的截距為
,求
的取值范圍.
【解析】(1)B
,C
,當(dāng)直線
的斜率是
時,
的方程為
,即
(1’)
聯(lián)立
得
,
(3’)
由已知
,
(4’)
由韋達定理可得
G方程為
(5’)
(2)設(shè)
:
,BC中點坐標(biāo)為
(6’)
得
由
得
(8’)
![]()
BC中垂線為
(10’)
![]()
(11’)
![]()
![]()
過拋物線![]()
![]()
的對稱軸上的定點
,作直線
與拋物線相交于
兩點.
(I)試證明
兩點的縱坐標(biāo)之積為定值;
(II)若點
是定直線
上的任一點,試探索三條直線
的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)
下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得
![]()
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點N(-m,n),則直線AN的斜率KAN=
,直線BN的斜率KBN=![]()
![]()
KAN+KBN=
+![]()
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com