題目列表(包括答案和解析)
已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線
的焦點(diǎn)為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到
。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為
…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
某中學(xué)研究性學(xué)習(xí)小組,為了考察高中學(xué)生的作文水平與愛看課外書的關(guān)系,在本校高三年級(jí)隨機(jī)調(diào)查了 50名學(xué)生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生的作文水平與愛看課外書有關(guān)系?
高中學(xué)生的作文水平與愛看課外書的2×2列聯(lián)表
|
|
愛看課外書 |
不愛看課外書 |
總計(jì) |
|
作文水平好 |
|
|
|
|
作文水平一般 |
|
|
|
|
總計(jì) |
|
|
|
(Ⅱ)將其中某5名愛看課外書且作文水平好的學(xué)生分別編號(hào)為1、2、3、4、5,某5名愛看課外書且作文水平一般的學(xué)生也分別編號(hào)為1、2、3、4、5,從這兩組學(xué)生中各任選1人進(jìn)行學(xué)習(xí)交流,求被選取的兩名學(xué)生的編號(hào)之和為3的倍數(shù)或4的倍數(shù)的概率.
參考公式:
,其中
.
參考數(shù)據(jù):
|
|
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
【解析】本試題主要考查了古典概型和列聯(lián)表中獨(dú)立性檢驗(yàn)的運(yùn)用。結(jié)合公式為
判定兩個(gè)分類變量的相關(guān)性,
第二問中,確定![]()
結(jié)合互斥事件的概率求解得到。
解:因?yàn)?×2列聯(lián)表如下
|
|
愛看課外書 |
不愛看課外書 |
總計(jì) |
|
作文水平好 |
18 |
6 |
24 |
|
作文水平一般 |
7 |
19 |
26 |
|
總計(jì) |
25 |
25 |
50 |
![]()
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由
,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
設(shè)橢圓
:
(
)的一個(gè)頂點(diǎn)為
,
,
分別是橢圓的左、右焦點(diǎn),離心率
,過橢圓右焦點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
(1)求橢圓
的方程;
(2)是否存在直線
,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為
,即
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到
,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合
得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為
,即![]()
,解得
,
橢圓的標(biāo)準(zhǔn)方程為
--------4分
(2)由題可知,直線
與橢圓必相交.
①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線斜率存在時(shí),設(shè)存在直線
為
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直線
的方程為
或
即
或![]()
(本小題滿分12分)
為了解某班學(xué)生喜歡打籃球是否與性別有關(guān),對(duì)該班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
|
| 喜歡打籃球 | 不喜歡打籃球 | 合 計(jì) |
| 男 生 |
| 5 |
|
| 女 生 | 10 |
|
|
| 合 計(jì) |
|
| 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜歡打籃球的學(xué)生的概率為0.6。
(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(Ⅱ)是否有99%的把握認(rèn)為喜歡打籃球與性別有關(guān)?說明你的理由;
(Ⅲ)已知不喜歡打籃球的5位男生中,
喜歡踢足球,
喜歡打羽毛球,
喜歡打乒乓球,現(xiàn)在從這5位男生中選取3位進(jìn)行其他方面的調(diào)查,求
和
不全被選中的概率。
附:1.![]()
2.在統(tǒng)計(jì)中,用以下結(jié)果對(duì)變量的獨(dú)立性進(jìn)行判斷:
(1)當(dāng)![]()
時(shí),沒有充分的證據(jù)判定變量
有關(guān)聯(lián),可以認(rèn)為變量
是沒有關(guān)聯(lián)的;
(2)當(dāng)![]()
時(shí),有90%的把握判定變量
有關(guān)聯(lián);
(3)當(dāng)![]()
時(shí),有95%的把握判定變量
有關(guān)聯(lián);
(4)當(dāng)![]()
時(shí),有99%的把握判定變量
有關(guān)聯(lián)。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com