題目列表(包括答案和解析)
在平面直角坐標系
中,曲線
與坐標軸的交點都在圓
上.
(1)求圓
的方程;
(2)若圓
與直線
交于
、
兩點,且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運用。
(1)曲線
與
軸的交點為(0,1),
與
軸的交點為(3+2
,0),(3-2
,0) 故可設
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因為圓
與直線
交于
、
兩點,且
。聯(lián)立方程組得到結(jié)論。
設橢圓
的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設點P的坐標為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設點P的坐標為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設點P的坐標為
.
由P在橢圓上,有![]()
因為
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
已知點
(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若
,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點
為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線
的方程是
,且以點
為圓心的圓
與直線
相切,
求圓
面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。
中∵直線
與曲線
相切,且過點
,∴
,利用求根公式得到結(jié)論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線
的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直線
與曲線
相切,且過點
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,則
的斜率
,
∴直線
的方程為:
,又
,
∴
,即
. -----------------7分
∵點
到直線
的距離即為圓
的半徑,即
,--------------8分
故圓
的面積為
. --------------------9分
(Ⅲ)∵直線
的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴![]()
,
當且僅當
,即
,
時取等號.
故圓
面積的最小值
.
已知中心在原點,焦點在
軸上的橢圓
的離心率為
,且經(jīng)過點![]()
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存過點
(2,1)的直線
與橢圓
相交于不同的兩點
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
【解析】第一問利用設橢圓
的方程為
,由題意得![]()
解得![]()
第二問若存在直線
滿足條件的方程為
,代入橢圓
的方程得
.
因為直線
與橢圓
相交于不同的兩點
,設
兩點的坐標分別為
,
所以![]()
所以
.解得。
解:⑴設橢圓
的方程為
,由題意得![]()
解得
,故橢圓
的方程為
.……………………4分
⑵若存在直線
滿足條件的方程為
,代入橢圓
的方程得
.
因為直線
與橢圓
相交于不同的兩點
,設
兩點的坐標分別為
,
所以![]()
所以
.
又
,
因為
,即
,
所以![]()
.
即
.
所以
,解得
.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
給出問題:已知△ABC滿足a·cosA=b·cosB,試判斷△ABC的形狀,某學生的解答如下:
![]()
故△ABC事直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于
![]()
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結(jié)果________.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com