題目列表(包括答案和解析)
(09年山東猜題卷)已知正三棱柱ABC―A1B1C1的底邊長為1,高為h(h>3),點M在側棱BB1上移動,到底面ABC的距離為x,
且AM與側面BCC1所成的角為α;
(Ⅰ)若α在區(qū)間
上變化,求x的變化范圍;
(Ⅱ)若
所成的角.
|
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
![]()
【解析】(Ⅰ)因為![]()
又
是平面PAC內的兩條相較直線,所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)設AC和BD相交于點O,連接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直線PD和平面PAC所成的角,從而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因為四邊形ABCD為等腰梯形,
,所以
均為等腰直角三角形,從而梯形ABCD的高為
于是梯形ABCD面積
在等腰三角形AOD中,![]()
所以![]()
故四棱錐
的體積為
.
![]()
【點評】本題考查空間直線垂直關系的證明,考查空間角的應用,及幾何體體積計算.第一問只要證明BD
平面PAC即可,第二問由(Ⅰ)知,BD
平面PAC,所以
是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由
算得體積
如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、
PC的中點.
![]()
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若ÐPDA=45°求EF與平面ABCD所成的角的大小.
【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用
第一問中,利用連AC,設AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點 ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO ∴ EF∥平面PAD.
第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC∴ EO為EF在平面AC內的射影 ∴ CD⊥EF.
第三問中,若ÐPDA=45°,則 PA=AD=BC ∵
EO![]()
BC,F(xiàn)O![]()
PA
∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°
證:連AC,設AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………① 在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD
∵ EF Ì 平面EFO ∴ EF∥平面PAD.
(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC ∴ EO為EF在平面AC內的射影 ∴ CD⊥EF.
(3)若ÐPDA=45°,則 PA=AD=BC ∵ EO![]()
BC,F(xiàn)O![]()
PA
∴ FO=EO 又 ∵ FO⊥平面AC ∴ △FOE是直角三角形 ∴ ÐFEO=45°
![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com