題目列表(包括答案和解析)
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問中,若對任意
不等式
恒成立,問題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對任意
不等式
恒成立,
問題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
已知函數(shù)
在
取得極值
(1)求
的單調(diào)區(qū)間(用
表示);
(2)設(shè)
,
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用![]()
![]()
根據(jù)題意
在
取得極值, ![]()
對參數(shù)a分情況討論,可知
當(dāng)
即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
![]()
當(dāng)
即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
![]()
第二問中,
由(1)知:
在
,
![]()
,![]()
在
![]()
![]()
從而求解。
解: ![]()
…..3分
在
取得極值,
……………………..4分
(1) 當(dāng)
即
時(shí) 遞增區(qū)間:
遞減區(qū)間:
,
![]()
當(dāng)
即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
………….6分
(2)
由(1)知:
在
,
![]()
,![]()
在
![]()
……………….10分
, 使
成立
![]()
![]()
![]()
得: ![]()
如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點(diǎn),|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長度是多少時(shí),矩形AMPN的面積最小?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時(shí),矩形AMPN的面積最?并求出最小面積.
![]()
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得
> 32 ,
∵x >2,∴
,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+
)
第二問,
當(dāng)且僅當(dāng)![]()
(3)令![]()
∴當(dāng)x
> 4,y′> 0,即函數(shù)y=
在(4,+∞)上單調(diào)遞增,∴函數(shù)y=
在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時(shí)y=
取得最小值,即SAMPN取得最小值27(平方米).
月餅是一種時(shí)間性很強(qiáng)的商品,若在中秋節(jié)前出售,每盒將獲利5元,若到中秋節(jié)還沒能及時(shí)售完,中秋節(jié)之后只能降價(jià)出售,每盒將虧損3元.根據(jù)市場調(diào)查,銷量
(百盒)的概率分布如下:
| 銷量 | 1 | 2 | 3 | 4 | 5 |
|
| 0.05 | 0.25 | 0.3 | 0.3 | 0.1 |
由于市場風(fēng)險(xiǎn)較大,批發(fā)商要求零售商預(yù)訂月餅的數(shù)量,且每年只預(yù)訂一次,訂貨量以百盒為單位.
⑴.設(shè)訂購量為
百盒時(shí),獲利額為
元.下表表示與
對應(yīng)的
的分布列,請?jiān)诳崭裉幪钊脒m當(dāng)?shù)?sub>
值,并計(jì)算相應(yīng)的獲利期望值
;
⑵.預(yù)訂多少盒月餅最合理?
|
| 1 | 2 | 3 | 4 | 5 |
|
| 0.05 | 0.25 | 0.3 | 0.3 | 0.1 | ||
| 1 | 500 | 500 | 500 | 500 | 500 | 500 |
| 2 | 200 | 1000 | 1000 | 1000 | 1000 | 960 |
| 3 | -100 | 700 | 1500 | 1500 | 1500 | |
| 4 | 400 | 1200 | 2000 | 2000 | ||
| 5 | 100 | 900 | 1700 | 2500 |
(解答本題第⑴小題只需在下面的表格的空位中填入你認(rèn)為正確的數(shù)據(jù)即可)
已知函數(shù)![]()
(1)若函數(shù)
的圖象經(jīng)過P(3,4)點(diǎn),求a的值;
(2)比較
大小,并寫出比較過程;
(3)若
,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)
的圖象經(jīng)過P(3,4)點(diǎn),所以
,解得
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以
.
(2)問中,對底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。
(3)中,由
知,
.,指對數(shù)互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數(shù)
的圖象經(jīng)過
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵當(dāng)
時(shí),
;
當(dāng)
時(shí),
. ……………… 6分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,![]()
當(dāng)
時(shí),
在
上為增函數(shù),∵
,∴
.
即
.當(dāng)
時(shí),
在
上為減函數(shù),
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com