題目列表(包括答案和解析)
如圖,邊長為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將
折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二問中,作MN
AE,垂足為N,連接DN
因?yàn)锳O
EO, DO
EO,EO
平面AOD,所以EO
DM
,因?yàn)锳O
DM ,DM
平面AOE
因?yàn)镸N
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足為N,連接DN
因?yàn)锳O
EO, DO
EO,EO
平面AOD,所以EO
DM
,因?yàn)锳O
DM ,DM
平面AOE
因?yàn)镸N
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值為![]()
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
![]()
【解析】本試題主要考查了立體幾何中的運(yùn)用。
(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE為等腰三角形.
取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =
.
連接FG,則FG∥EC,F(xiàn)G⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2
=
,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小為120°
如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求證:PD⊥BC;
(II)求二面角B—PD—C的正切值。
![]()
【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二問中解:取PD的中點(diǎn)E,連接CE、BE,
為正三角形,![]()
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,
∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。
如圖1,在
中,
,D,E分別為AC,AB的中點(diǎn),點(diǎn)F為線段CD上的一點(diǎn),將
沿DE折起到
的位置,使
,如圖2.
(Ⅰ)求證:DE∥平面![]()
(Ⅱ)求證:![]()
(Ⅲ)線段
上是否存在點(diǎn)Q,使
?說明理由。
![]()
【解析】(1)∵DE∥BC,由線面平行的判定定理得出
(2)可以先證
,得出
,∵
∴![]()
∴![]()
(3)Q為
的中點(diǎn),由上問
,易知
,取
中點(diǎn)P,連接DP和QP,不難證出
,
∴
∴
,又∵
∴![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com