題目列表(包括答案和解析)
| 3 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
| 5 |
| 2 |
某個計算機有A,B兩個數(shù)據(jù)輸入口,另有C是計算結(jié)果的輸出口,計算過程是由A,B分別輸入正整數(shù)m和n.經(jīng)計算得正整數(shù)k,然后由C輸出(過程可簡單表示為關(guān)系式f(m,n)=k).此種計算裝置完成的計算機滿足以下三個性質(zhì).
①若A,B的輸入1,則輸出的結(jié)果為2,即f(1,1)=2;
②若A輸入1,B的輸入由n變?yōu)閚+1,則輸出的結(jié)果比原來增大2,即f(1,n+1)=f(1,n)+2;
③若B輸入n,A的輸入由m變?yōu)閙+1,則輸出結(jié)果為原來的3倍,即f(m+1,n)=3f(m,n).
試回答下列問題:
(1)若A輸入2,B輸入3,則輸出結(jié)果為多少?
(2)若A輸入1,B輸入n(n∈N+),則輸出結(jié)果為多少?
(3)由C能輸出多少個不同的兩位數(shù)?
說明:本題題干比較長,情景相對陌生,將題干中的語言轉(zhuǎn)化為數(shù)列語言是解題關(guān)鍵.
已知點A、B、C的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(
,
).
(1)若|
|=|
|,求角α的值;
(2)若
·
=-1,求
的值.
【解析】第一問中利用向量的模相等,可以得到角α的值。
第二問中,
·
=-1,則化簡
可知結(jié)論為![]()
解:因為點A、B、C的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(
,
).|
|=|
|
所以α=
.
(2)因為
·
=-1,
即
.
已知
,且
.
(1)求
的值;
(2)求
的值.
【解析】本試題主要考查了二項式定理的運用,以及系數(shù)求和的賦值思想的運用。第一問中,因為
,所以
,可得
,第二問中,因為
,所以
,所以
,利用組合數(shù)性質(zhì)可知。
解:(1)因為
,所以
, ……3分
化簡可得
,且
,解得
. …………6分
(2)
,所以
,
所以
,![]()
已知曲線
上動點
到定點
與定直線
的距離之比為常數(shù)
.
(1)求曲線
的軌跡方程;
(2)若過點
引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線
的左頂點
為圓心作圓
:
,設(shè)圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點
作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,
;,化簡得
![]()
第三問點N與點M關(guān)于X軸對稱,設(shè)
,, 不妨設(shè)
.
由于點M在橢圓C上,所以
.
由已知
,則
,
由于
,故當
時,
取得最小值為
.
計算得,
,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com