題目列表(包括答案和解析)
一個(gè)等比數(shù)列的首項(xiàng)為1,項(xiàng)數(shù)是偶數(shù),其奇數(shù)項(xiàng)的和為85,偶數(shù)項(xiàng)的和為170,求此數(shù)列的公比和項(xiàng)數(shù).
思路分析:因奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和不同,項(xiàng)數(shù)相同,可知其公比q≠1,故可直接套用求和公式,列方程組解決.
已知
是等差數(shù)列,其前n項(xiàng)和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項(xiàng)公式;
(Ⅱ)記
,
,證明
(
).
【解析】(1)設(shè)等差數(shù)列
的公差為d,等比數(shù)列
的公比為q.
由
,得
,
,
.
由條件,得方程組
,解得![]()
所以
,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時(shí),
,
,故等式成立.
② 假設(shè)當(dāng)n=k時(shí)等式成立,即
,則當(dāng)n=k+1時(shí),有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1時(shí)等式也成立
由①和②,可知對(duì)任意
,
成立.
在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,
.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿(mǎn)足
,求{cn}的前n項(xiàng)和Tn.
【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問(wèn)中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,
,可得
,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1. 第二問(wèn)中,
,由第一問(wèn)中知道
,然后利用裂項(xiàng)求和得到Tn.
解: (Ⅰ) 設(shè):{an}的公差為d,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分
![]()
已知等差數(shù)列{an}的首項(xiàng)為4,公差為4,其前n項(xiàng)和為Sn,則數(shù)列 {
}的前n項(xiàng)和為( )
|
| A. |
| B. |
| C. |
| D. |
|
| 考點(diǎn): | 數(shù)列的求和;等差數(shù)列的性質(zhì). |
| 專(zhuān)題: | 等差數(shù)列與等比數(shù)列. |
| 分析: | 利用等差數(shù)列的前n項(xiàng)和即可得出Sn,再利用“裂項(xiàng)求和”即可得出數(shù)列 { |
| 解答: | 解:∵Sn=4n+ ∴ ∴數(shù)列 { 故選A. |
| 點(diǎn)評(píng): | 熟練掌握等差數(shù)列的前n項(xiàng)和公式、“裂項(xiàng)求和”是解題的關(guān)鍵. |
已知數(shù)列
是首項(xiàng)為
的等比數(shù)列,且滿(mǎn)足![]()
.
(1) 求常數(shù)
的值和數(shù)列
的通項(xiàng)公式;
(2) 若抽去數(shù)列
中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第
項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列
,試寫(xiě)出數(shù)列
的通項(xiàng)公式;
(3) 在(2)的條件下,設(shè)數(shù)列
的前
項(xiàng)和為
.是否存在正整數(shù)
,使得
?若存在,試求所有滿(mǎn)足條件的正整數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)中解:由
得
,,
又因?yàn)榇嬖诔?shù)p使得數(shù)列
為等比數(shù)列,
則
即
,所以p=1
故數(shù)列
為首項(xiàng)是2,公比為2的等比數(shù)列,即
.
此時(shí)
也滿(mǎn)足,則所求常數(shù)
的值為1且![]()
第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:
(i)當(dāng)
時(shí),
;
(ii) 當(dāng)
時(shí),
,
所以![]()
第三問(wèn)假設(shè)存在正整數(shù)n滿(mǎn)足條件,則
,
則(i)當(dāng)
時(shí),
![]()
,
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com