題目列表(包括答案和解析)
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線
的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到
,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為
…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
| (c×2-bx+a) |
| x2 |
| 1 |
| x |
| b |
| x |
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| b |
| (x+a) |
| (x+c) |
| (x+d) |
| bx |
| (ax-1) |
| (cx-1) |
| (dx-1) |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
19C.解:由
得
,所以
,所以
,因為f(x)=x,所以
解得x=-1或-2或2,所以選C
調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生時間與性別的關系,得到以下數(shù)據(jù)。
| 晚上 | 白天 | 合計 | |
| 男嬰 | 24 | 31 | 55 |
| 女嬰 | 8 | 26 | 34 |
| 合計 | 32 | 57 | 89 |
試問有多大把握認為嬰兒的性別與出生時間有關系?
已知橢圓C:
=1(a>b>0)的離心率為
,以原點為圓點,橢圓的短半軸為半徑的圓與直線x-y+
=0相切。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設P(4,0),A,B是橢圓C上關于x軸對稱的任意兩個不同的點,連接PB交隨圓C于另一點E,證明直線AE與x軸相交于定點Q;
【解析】(1)離心率為
得
=
,橢圓的短半軸為半徑的圓與直線x-y+
=0相切,b=
=
,解得a2=4,b2=3;(Ⅱ)直線PB的方程為y=k(x-4)
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關系是
,結(jié)合
,解得。
(2)由
,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com