題目列表(包括答案和解析)
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當(dāng)x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時,取
,有
,故
時不合題意.當(dāng)
時,令
,即![]()
![]()
令
,得![]()
①當(dāng)
時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時,
,對于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時,不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
對于命題“若a∈R,a-π是有理數(shù),則a是無理數(shù)”,有下列證法:
(1)假設(shè)a是有理數(shù),那么根據(jù)運算性質(zhì)知,a-π是無理數(shù),與已知a-π是有理數(shù)相矛盾,故假設(shè)不成立,原命題正確.
(2)假設(shè)a是有理數(shù),由a-π是有理數(shù)知,π是有理數(shù),這與π是無理數(shù)相矛盾,故假設(shè)不成立,原命題正確.
(3)假設(shè)a是有理數(shù),由a-π是有理數(shù)與π是無理數(shù)可知,a為無理數(shù),這與假設(shè)想矛盾,故假設(shè)不成立,從而原命題正確.
其中,證法正確的有
[ ]
已知數(shù)列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用
關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時,
,命題成立;
②假設(shè)
時,命題成立,即
,
則當(dāng)
時,![]()
![]()
即![]()
即![]()
故當(dāng)
時,命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com