題目列表(包括答案和解析)
已知曲線
上動點
到定點
與定直線
的距離之比為常數(shù)
.
(1)求曲線
的軌跡方程;
(2)若過點
引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線
的左頂點
為圓心作圓
:
,設(shè)圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點
作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,
;,化簡得
![]()
第三問點N與點M關(guān)于X軸對稱,設(shè)
,, 不妨設(shè)
.
由于點M在橢圓C上,所以
.
由已知
,則
,
由于
,故當
時,
取得最小值為
.
計算得,
,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:![]()
平面直角坐標系內(nèi)的向量都可以用一有序?qū)崝?shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設(shè)直線
l的傾斜角為α(α≠90°).在l上任取兩個不同的點這就是《數(shù)學
2》中已經(jīng)得到的斜率公式.上述推導過程比《數(shù)學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關(guān)問題嗎?例如:(1)
過點(2)
向量(A,B)與直線(3)
設(shè)直線![]()
![]()
那么,
(4)
點![]()
| s |
| t |
| s |
| t |
| 2 |
已知函數(shù)
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調(diào)遞增!
在
最大值為
。
綜上,當
時,即
時,
在區(qū)間
上的最大值為2;
當
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com