題目列表(包括答案和解析)
三棱柱
中,側(cè)棱與底面垂直,
,
,
分別是
,
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐![]()
的體積.
![]()
【解析】第一問利連結(jié)
,
,∵M,N是AB,
的中點∴MN//
.
又∵
平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形
是正方形.∴
.∴
.連結(jié)
,
.
∴
,又N中
的中點,∴
.
∵
與
相交于點C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
.得到結(jié)論。
⑴連結(jié)
,
,∵M,N是AB,
的中點∴MN//
.
又∵
平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,
∴四邊形
是正方形.∴
.
∴
.連結(jié)
,
.
∴
,又N中
的中點,∴
.
∵
與
相交于點C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
![]()
如圖,在三棱柱
中,
側(cè)面
,
為棱
上異于
的一點,
,已知
,求:
(Ⅰ)異面直線
與
的距離;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標系
解:(I)以B為原點,
、
分別為Y,Z軸建立空間直角坐標系.由于,![]()
![]()
在三棱柱
中有
,
設(shè)![]()
![]()
![]()
又
側(cè)面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有
故二面角
的平面角
的大小為向量
與
的夾角.
![]()
如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC.PC于D.E兩點,又PB=BC,PA=AB.
(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點Q是線段PA上任一點,求證:BD⊥DQ;
(Ⅲ)線段PA上是否存在點Q,使得PC//平面BDQ.若存在,求出
點的位置,若不存在,說明理由.
(本小題滿分12分)如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.
![]()
(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點Q是線段PA上任一點,求證:BD⊥DQ;
(Ⅲ)線段PA上是否存在點Q,使得PC//平面BDQ.若存在,求出
點的位置,若不存在,說明理由.
下列推理是類比推理的是( )
A.由數(shù)列
,猜測出該數(shù)列的通項為
B. 平面內(nèi)不共線的三點確定一個圓,由此猜想空間不共面的三點確定一個球
C.垂直于同一平面的兩條直線平行,又直線
,直線
,推出
D.由
,推出![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com