題目列表(包括答案和解析)
設(shè)函數(shù)
.
(I)求
的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時,求函數(shù)
在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到
.
.
令
,則
,所以
或
,得到結(jié)論。
第二問中,
(
).
.
因為0<a<2,所以
,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為
. ………………………1分
.
令
,則
,所以
或
. ……………………3分
因為定義域為
,所以
.
令
,則
,所以
.
因為定義域為
,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為
,
單調(diào)遞減區(qū)間為
.
………………………7分
(II)
(
).
.
因為0<a<2,所以
,
.令
可得
.…………9分
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
①當(dāng)
,即
時,
在區(qū)間
上,
在
上為減函數(shù),在
上為增函數(shù).
所以
. ………………………10分
②當(dāng)
,即
時,
在區(qū)間
上為減函數(shù).
所以
.
綜上所述,當(dāng)
時,
;
當(dāng)
時,![]()
已知函數(shù)
其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(III)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點定位】本小題主要考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,函數(shù)的最值等基礎(chǔ)知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
已知函數(shù)f(x)=
,
為常數(shù)。
(I)當(dāng)
=1時,求f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求
的取值范圍。
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問中,利用當(dāng)a=1時,f(x)=
,則f(x)的定義域是
然后求導(dǎo),
,得到由
,得0<x<1;由
,得x>1;得到單調(diào)區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),則
或
在區(qū)間[1,2]上恒成立,即即
,或
在區(qū)間[1,2]上恒成立,解得a的范圍。
(1)當(dāng)a=1時,f(x)=
,則f(x)的定義域是![]()
。
由
,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函數(shù),在(1,
上是減函數(shù)!6分
(2)
。若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),
則
或
在區(qū)間[1,2]上恒成立!
,或
在區(qū)間[1,2]上恒成立。即
,或
在區(qū)間[1,2]上恒成立。
又h(x)=
在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=
,h(x)min=h(1)=3
即![]()
,或
。 ∴![]()
,或
。
已知函數(shù)
,數(shù)列
的項滿足:
,(1)試求![]()
(2) 猜想數(shù)列
的通項,并利用數(shù)學(xué)歸納法證明.
【解析】第一問中,利用遞推關(guān)系
, ![]()
, ![]()
第二問中,由(1)猜想得:
然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(數(shù)學(xué)歸納法證明)i)
,
,命題成立
ii) 假設(shè)
時,
成立
則
時,![]()
![]()
![]()
綜合i),ii) :
成立
在
中,內(nèi)角A,B,C所對的分別是a,b,c。已知a=2,c=
,cosA=
.
(I)求sinC和b的值;
(II)求
的值。
【考點定位】本小題主要考查同角三角函數(shù)的基本關(guān)系、二倍角的正弦與余弦公式、兩角和余弦公式以及正弦定理、余弦定理等基礎(chǔ)知識,考查基本運算求解能力.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com