題目列表(包括答案和解析)
(本題滿分14分)
已知函數(shù)
,
,![]()
(Ⅰ)當(dāng)
時,若
在
上單調(diào)遞增,求
的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對
:當(dāng)
是整數(shù)時,存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對
,試構(gòu)造一個定義在
,且
上的函數(shù)
,使當(dāng)
時,
,當(dāng)
時,
取得最大值的自變量的值構(gòu)成以
為首項的等差數(shù)列。
(本題滿分14分)
已知函數(shù)
,
,![]()
(Ⅰ)當(dāng)
時,若
在
上單調(diào)遞增,求
的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對
:當(dāng)
是整數(shù)時,存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對
,試構(gòu)造一個定義在
,且
上的函數(shù)
,使當(dāng)
時,
,當(dāng)
時,
取得最大值的自變量的值構(gòu)成以
為首項的等差數(shù)列。
已知函數(shù) ![]()
R).
(Ⅰ)若
,求曲線
在點
處的的切線方程;
(Ⅱ)若
對任意 ![]()
恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。
第一問中,利用當(dāng)
時,
.
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當(dāng)
時,
.
,
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為
,所以
恒成立,
故
在
上單調(diào)遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)
時,
在
上恒成立,
故
在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)
時,令
,對稱軸
,
則
在
上單調(diào)遞增,又
① 當(dāng)
,即
時,
在
上恒成立,
所以
在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)
時,
,
不合題意,舍去 14分
綜上所述:
| e1 |
| e2 |
| e1 |
| e2 |
| e1 |
| e2 |
| π |
| 3 |
| e1 |
| e2 |
| e1 |
| e2 |
| 1 |
| 2 |
| 1 |
| 4 |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com