題目列表(包括答案和解析)
設(shè)點(diǎn)
是拋物線(xiàn)![]()
![]()
的焦點(diǎn),
是拋物線(xiàn)
上的
個(gè)不同的點(diǎn)(![]()
).
(1) 當(dāng)
時(shí),試寫(xiě)出拋物線(xiàn)
上的三個(gè)定點(diǎn)
、
、
的坐標(biāo),從而使得
;
(2)當(dāng)
時(shí),若
,
求證:
;
(3) 當(dāng)
時(shí),某同學(xué)對(duì)(2)的逆命題,即:
“若
,則
.”
開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對(duì)任意給定的大于3的正整數(shù)
,試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.
【解析】第一問(wèn)利用拋物線(xiàn)
的焦點(diǎn)為
,設(shè)
,
分別過(guò)
作拋物線(xiàn)
的準(zhǔn)線(xiàn)
的垂線(xiàn),垂足分別為
.
由拋物線(xiàn)定義得到
第二問(wèn)設(shè)
,分別過(guò)
作拋物線(xiàn)
的準(zhǔn)線(xiàn)
垂線(xiàn),垂足分別為
.
由拋物線(xiàn)定義得
![]()
![]()
第三問(wèn)中①取
時(shí),拋物線(xiàn)
的焦點(diǎn)為
,
設(shè)
,
分別過(guò)![]()
作拋物線(xiàn)
的準(zhǔn)線(xiàn)
垂線(xiàn),垂足分別為![]()
.由拋物線(xiàn)定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線(xiàn)
的焦點(diǎn)為
,設(shè)
,
分別過(guò)
作拋物線(xiàn)
的準(zhǔn)線(xiàn)
的垂線(xiàn),垂足分別為
.由拋物線(xiàn)定義得
![]()
![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以
,
故可取![]()
![]()
滿(mǎn)足條件.
(2)設(shè)
,分別過(guò)
作拋物線(xiàn)
的準(zhǔn)線(xiàn)
垂線(xiàn),垂足分別為
.
由拋物線(xiàn)定義得
![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時(shí),拋物線(xiàn)
的焦點(diǎn)為
,
設(shè)
,
分別過(guò)![]()
作拋物線(xiàn)
的準(zhǔn)線(xiàn)
垂線(xiàn),垂足分別為![]()
.由拋物線(xiàn)定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個(gè)當(dāng)
時(shí),該逆命題的一個(gè)反例.(反例不唯一)
② 設(shè)
,分別過(guò)
作
拋物線(xiàn)
的準(zhǔn)線(xiàn)
的垂線(xiàn),垂足分別為
,
由
及拋物線(xiàn)的定義得
,即
.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)
的縱坐標(biāo)無(wú)關(guān),所以只要將這
點(diǎn)都取在
軸的上方,則它們的縱坐標(biāo)都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說(shuō)明:本質(zhì)上只需構(gòu)造滿(mǎn)足條件且
的一組
個(gè)不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)
的縱坐標(biāo)
(
)滿(mǎn)足
”,即:
“當(dāng)
時(shí),若
,且點(diǎn)
的縱坐標(biāo)
(
)滿(mǎn)足
,則
”.此命題為真.事實(shí)上,設(shè)
,
分別過(guò)
作拋物線(xiàn)
準(zhǔn)線(xiàn)
的垂線(xiàn),垂足分別為
,由
,
及拋物線(xiàn)的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補(bǔ)充條件2:“點(diǎn)
與點(diǎn)![]()
為偶數(shù),
關(guān)于
軸對(duì)稱(chēng)”,即:
“當(dāng)
時(shí),若
,且點(diǎn)
與點(diǎn)![]()
為偶數(shù),
關(guān)于
軸對(duì)稱(chēng),則
”.此命題為真.(證略)
如圖,
是△
的重心,
、
分別是邊
、
上的動(dòng)點(diǎn),且
、
、
三點(diǎn)共線(xiàn).
(1)設(shè)
,將
用
、
、
表示;
(2)設(shè)
,
,證明:
是定值;
(3)記△
與△
的面積分別為
、
.求
的取值范圍.
(提示:![]()
![]()
【解析】第一問(wèn)中利用(1)![]()
![]()
第二問(wèn)中,由(1),得
;①
另一方面,∵
是△
的重心,
∴![]()
而
、
不共線(xiàn),∴由①、②,得![]()
第三問(wèn)中,![]()
由點(diǎn)
、
的定義知
,
,
且
時(shí),
;
時(shí),
.此時(shí),均有
.
時(shí),
.此時(shí),均有
.
以下證明:
,結(jié)合作差法得到。
解:(1)![]()
.
(2)一方面,由(1),得
;①
另一方面,∵
是△
的重心,
∴
. ②
而
、
不共線(xiàn),∴由①、②,得
解之,得
,∴
(定值).
(3)
.
由點(diǎn)
、
的定義知
,
,
且
時(shí),
;
時(shí),
.此時(shí),均有
.
時(shí),
.此時(shí),均有
.
以下證明:
.(法一)由(2)知
,
∵
,∴
.
∵
,∴
.
∴
的取值范圍![]()
,
,
為常數(shù),離心率為
的雙曲線(xiàn)
:
上的動(dòng)點(diǎn)
到兩焦點(diǎn)的距離之和的最小值為
,拋物線(xiàn)
:![]()
的焦點(diǎn)與雙曲線(xiàn)
的一頂點(diǎn)重合。(Ⅰ)求拋物線(xiàn)
的方程;(Ⅱ)過(guò)直線(xiàn)
:
(
為負(fù)常數(shù))上任意一點(diǎn)
向拋物線(xiàn)
引兩條切線(xiàn),切點(diǎn)分別為
、
,坐標(biāo)原點(diǎn)
恒在以
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍。
【解析】第一問(wèn)中利用由已知易得雙曲線(xiàn)焦距為
,離心率為
,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為
,所以?huà)佄锞(xiàn)
的方程![]()
第二問(wèn)中,
為
,
,
,
故直線(xiàn)
的方程為
,即
,
所以
,同理可得:![]()
借助于根與系數(shù)的關(guān)系得到即
,
是方程
的兩個(gè)不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得雙曲線(xiàn)焦距為
,離心率為
,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為
,所以?huà)佄锞(xiàn)
的方程![]()
(Ⅱ)設(shè)
為
,
,
,
故直線(xiàn)
的方程為
,即
,
所以
,同理可得:
,
即
,
是方程
的兩個(gè)不同的根,所以![]()
由已知易得
,即![]()
在證明
為增函數(shù)的過(guò)程中,有下列四個(gè)命題:①增函數(shù)的定義是大前提;②增函數(shù)的定義是小前提;③函數(shù)
滿(mǎn)足增函數(shù)的定義是小前提;④函數(shù)
滿(mǎn)足增函數(shù)的定義是大前提;其中正確的命題是 ( )
(A)①②
(B)②④
(C)①③
(D)②③
| 13 |
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com