欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若.是兩條不重合直線..是兩個不重合的平面.則∥的一個充分而不必要條件是 查看更多

 

題目列表(包括答案和解析)

、為兩條不重合的直線,、為兩個不重合的平面,給出下列命題

①若、都平行于平面,則、一定不是相交直線;②若為都垂直于平面,則、一定是平行直線;③已知、互相垂直,、互相垂直,若;④、在平面內的射影互相垂直,則、互相垂直。其中的假命題的序號是               .

 

查看答案和解析>>

為兩條不重合的直線,、為兩個不重合的平面,給出下列命題

①若都平行于平面,則、一定不是相交直線;②若、為都垂直于平面,則、一定是平行直線;③已知互相垂直,互相垂直,若;④在平面內的射影互相垂直,則、互相垂直。其中的假命題的序號是             

 

查看答案和解析>>

、為兩條不重合的直線,為兩個不重合的平面,給出下列命題
①若、都平行于平面,則、一定不是相交直線;②若、為都垂直于平面,則、一定是平行直線;③已知互相垂直,、互相垂直,若;④在平面內的射影互相垂直,則互相垂直。其中的假命題的序號是              .

查看答案和解析>>

、為兩條不重合的直線,、為兩個不重合的平面,給出下列命題
①若、都平行于平面,則一定不是相交直線;②若、為都垂直于平面,則、一定是平行直線;③已知、互相垂直,、互相垂直,若;④在平面內的射影互相垂直,則、互相垂直。其中的假命題的序號是              .

查看答案和解析>>

8、設α、β是兩個不同的平面,l、m是兩條不重合的直線,下列命題中正確的是(  )

查看答案和解析>>

一.1、A,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、A,10、D

二.11、-3;.12、1;13、14、15、

三.16.解:

……(2’)

整理得:……………………………(4’)

又A為銳角,…………………(6’)

(2)由(1)知………………………(7’)

……………………………(12’)

當B=600時,Y取得最大值。……………………(13’)

 17. 設答對題的個數(shù)為y,得分為,y=0,1,2,4 ,=0,2,4,8………(1’)

,       ,

<big id="tfmbm"></big>
<source id="tfmbm"><dfn id="tfmbm"><th id="tfmbm"></th></dfn></source>

    0

    2

    4

    8

    P

     

    的分布列為

    …………………………………10分

      

     

     

     

    (2)E=…………………………12分

    答:該人得分的期望為2分……………………………………………………13分

    18. 解:(1)取AC中點D,連結SD、DB.

    ∵SA=SC,AB=BC,

    ∴AC⊥SD且AC⊥BD,

    ∴AC⊥平面SDB,又SB平面SDB,

    ∴AC⊥SB-----------4分

    (2)∵AC⊥平面SDB,AC平面ABC,

    ∴平面SDB⊥平面ABC.

    過N作NE⊥BD于E,NE⊥平面ABC,

    過E作EF⊥CM于F,連結NF,

    則NF⊥CM.

    ∴∠NFE為二面角N-CM-B的平面角---------------6分

    ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

    又∵NE⊥平面ABC,∴NE∥SD.

    ∵SN=NB,

    ∴NE=SD===, 且ED=EB.

    在正△ABC中,由平幾知識可求得EF=MB=

    在Rt△NEF中,tan∠NFE==2

    ∴二面角N―CM―B的大小是arctan2-----------------------8分

    (3)在Rt△NEF中,NF==,

    ∴S△CMN=CM?NF=,

    S△CMB=BM?CM=2-------------11分

    設點B到平面CMN的距離為h,

    ∵VB-CMN=VN-CMB,NE⊥平面CMB,

    S△CMN?h=S△CMB?NE,∴h==.

    即點B到平面CMN的距離為--------13分

    19. (1)解:當0<t≤10時,
      是增函數(shù),且                3分
      當20<t≤40時,是減函數(shù),且                    6分
      所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘                7分

    (2)解:,所以,講課開始25分鐘時,學生的注意力比講課開始后5分鐘更集中 9分

    (3)當0<t≤10時,令得:                   10分
      當20<t≤40時,令得:                      12分
      則學生注意力在180以上所持續(xù)的時間
      所以,經(jīng)過適當安排,老師可以在學生達到所需要的狀態(tài)下講授完這道題         14分

     

    20.解:

    (1)設

    最大值為。故

    ………………………(6’)

    (2)由橢圓離心率得雙曲線

    ……………(7’)

    ①     當AB⊥x軸時,

    .…………(9’)

    ②當時.

    ………………………………………………(12’)

    同在內……………(13’)

    =

    =有成立!(14’).

    21. (1)
      當a≥0時,在[2,+∞)上恒大于零,即,符合要求;      2分
        當a<0時,令,g (x)在[2,+∞)上只能恒小于零
      故△=1+4a≤0或,解得:a≤
      ∴a的取值范圍是                                     6分

    (2)a = 0時,
      當0<x<1時,當x>1時,∴              8分

    (3)反證法:假設x1 = b>1,由,
        ∴
      故
       ,即 、
      又由(2)當b>1時,,∴
      與①矛盾,故b≤1,即x1≤1
      同理可證x2≤1,x3≤1,…,xn≤1(n∈N*)                                 14分