題目列表(包括答案和解析)
已知橢圓
的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,離心率為
,且過雙曲線
的頂點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)
、
是雙曲線
上關(guān)于它的中心對稱的任意兩點(diǎn),
為該雙曲線上的動點(diǎn),若直線
、
均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關(guān)于橢圓
的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程
(
,
不同時為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
(Ⅰ)已知函數(shù)
,若存在
,使得
,則稱
是函數(shù)
的一個不動點(diǎn),設(shè)二次函數(shù)
.
(Ⅰ) 當(dāng)
時,求函數(shù)
的不動點(diǎn);
(Ⅱ) 若對于任意實(shí)數(shù)
,函數(shù)
恒有兩個不同的不動點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)
的圖象上
兩點(diǎn)的橫坐標(biāo)是函數(shù)
的不動點(diǎn),且直線
是線段
的垂直平分線,求實(shí)數(shù)
的取值范圍.
已知函數(shù)
,若存在
,使得
,則稱
是函數(shù)
的一個不動點(diǎn),設(shè)二次函數(shù)
.
(Ⅰ) 當(dāng)
時,求函數(shù)
的不動點(diǎn);
(Ⅱ) 若對于任意實(shí)數(shù)
,函數(shù)
恒有兩個不同的不動點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)
的圖象上
兩點(diǎn)的橫坐標(biāo)是函數(shù)
的不動點(diǎn),且直線
是線段
的垂直平分線,求實(shí)數(shù)
的取值范圍.
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)
(0,1), 問是否存在直線
與橢圓
交于
兩點(diǎn),且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
第二問中,
假設(shè)存在這樣的直線
,設(shè)
,MN的中點(diǎn)為![]()
因?yàn)閨ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
(Ⅱ) 假設(shè)存在這樣的直線
,設(shè)
,MN的中點(diǎn)為![]()
因?yàn)閨ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得
……② ……………………9分
則
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
綜上(i)(ii)可知,存在這樣的直線
,其斜率k的取值范圍是![]()
| x2 |
| a2 |
| y2 |
| b2 |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com