題目列表(包括答案和解析)
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)
時(shí),求證:
;
(Ⅱ)若
邊上有且只有一個(gè)點(diǎn)
,使得
,求此時(shí)二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
………………2分
又
,得證。
第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得![]()
由此知道a=2, 設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當(dāng)
時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
又![]()
………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2,
設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
如圖,在三棱錐
中,平面
平面
,
,
,
,
為
中點(diǎn).(Ⅰ)求點(diǎn)B到平面
的距離;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一問(wèn)中利用因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,
為
中點(diǎn),所以![]()
而平面
平面
,所以
平面
,再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系得
,
,
,
,
,
,
故平面
的法向量
而
,故點(diǎn)B到平面
的距離![]()
第二問(wèn)中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,
為
中點(diǎn),所以![]()
而平面
平面
,所以
平面
,
再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故點(diǎn)B到平面
的距離![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
如圖所示,圓柱的高為2,底面半徑為
,AE、DF是圓柱的兩條母線,過(guò)
作圓柱的截面交下底面于
.![]()
(1)求證:
;
(2)若四邊形ABCD是正方形,求證
;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值。
![]()
【解析】第一問(wèn)中,利用由圓柱的性質(zhì)知:AD平行平面BCFE
又過(guò)
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
。粒摹危牛
第二問(wèn)中,由線面垂直得到線線垂直。四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內(nèi)兩條相交直線
![]()
![]()
第三問(wèn)中,設(shè)正方形ABCD的邊長(zhǎng)為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE
又過(guò)
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
。粒摹危牛![]()
(2)
四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內(nèi)兩條相交直線
![]()
![]()
(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
| 1 | 16 |
零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)=
=
.
(Ⅱ)(i)解:一等品零件的編號(hào)為
.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:
,
,共有6種.
所以P(B)=
.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com