欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(文)過拋物線上點M的切線的斜率為l.則此切線與x軸交點的坐標為 . 查看更多

 

題目列表(包括答案和解析)

(文)已知拋物線C:y2=2px(p>0)的準線為l,焦點為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點O作傾斜角為數學公式的直線,交l于點A,交⊙M于另一點B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的標準方程;
(Ⅱ)過圓心M的直線交拋物線C于P、Q兩點,問數學公式是否為定值,若是定值,求出該定值.

查看答案和解析>>

(文)已知拋物線C:y2=2px(p>0)的準線為l,焦點為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點O作傾斜角為的直線,交l于點A,交⊙M于另一點B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的標準方程;
(Ⅱ)過圓心M的直線交拋物線C于P、Q兩點,問是否為定值,若是定值,求出該定值.

查看答案和解析>>

(文)已知拋物線C:y2=2px(p>0)的準線為l,焦點為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點O作傾斜角為
π
3
的直線,交l于點A,交⊙M于另一點B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的標準方程;
(Ⅱ)過圓心M的直線交拋物線C于P、Q兩點,問
OP
OQ
是否為定值,若是定值,求出該定值.

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因為

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當恒成立,

    必須且只須, …………8分

   

     則   ………………9分

    ②當……10分

    要使當

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設B1到平面PAB的距離為h,則由

  ………………8分

   (3)設平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

<abbr id="55ruq"></abbr>
<i id="55ruq"><legend id="55ruq"></legend></i>

          解法二:(1)取B1C1的中點O,則A1O⊥B1C1

          以O為坐標原點,建立空間直角坐標系如圖,

             (2)是平面PAB的一個法向量,

             ………………5分

             ………………6分

            ………………8分

             (3)設P點坐標為(),則

          是平面PAB的一個法向量,與(2)同理有

              令

              同理可求得平面PA1B1的一個法向量   ………………10分

              要使平面PAB⊥平面PA1B1,只需

                ………………11分

              解得: …………12分

          21.(理)解:(1)由條件得

             

             (2)①設直線m ……5分

             

              ②不妨設M,N的坐標分別為

          …………………8分

          因直線m的斜率不為零,故

             (文)解:(1)設  …………2分

             

              故所求雙曲線方程為:

             (2)設,

             

              由焦點半徑,  ………………8分

             

          22.(1)證明:

              所以在[0,1]上為增函數,   ………………3分

             (2)解:由

             

             (3)解:由(1)與(2)得 …………9分

              設存在正整數k,使得對于任意的正整數n,都有成立,

                 ………………10分

             

              ,   ………………11分

              當,   ………………12分

              當    ………………13分

              所在存在正整數

              都有成立.   ………………14分