題目列表(包括答案和解析)
過拋物線![]()
![]()
的對稱軸上的定點
,作直線
與拋物線相交于
兩點.
(I)試證明
兩點的縱坐標之積為定值;
(II)若點
是定直線
上的任一點,試探索三條直線
的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)
下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得
![]()
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點N(-m,n),則直線AN的斜率KAN=
,直線BN的斜率KBN=![]()
![]()
KAN+KBN=
+![]()
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線
經(jīng)過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設(shè)
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設(shè)M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
C
解析:顯然q≠1.由已知![]()
,整理得q=3,又![]()
∴
,
=3. ∴![]()
橢圓
的左、右焦點分別為
,一條直線
經(jīng)過點
與橢圓交于
兩點.
⑴求
的周長;
⑵若
的傾斜角為
,求
的面積.
【解析】(1)根據(jù)橢圓的定義
的周長等于4a.
(2)設(shè)
,則
,然后直線l的方程與橢圓方程聯(lián)立,消去x,利用韋達定理可求出所求三角形的面積.
C
解析:顯然q≠1.由已知![]()
,整理得q=3,又![]()
∴
,
=3. ∴![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com