欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

<s id="yoq4q"></s>
    • <dl id="yoq4q"></dl>

      2,4,6

      二、填空題(每小題4分,共4小題,滿分16分)

      13.800    14.    15.625    16.②④

      三、解答題(本大題共6小題,滿分74分)

      17.解

         (Ⅰ)由題意知

      ……………………3分

      ……………………4分

      的夾角

      ……………………6分

      (Ⅱ)

      ……………………9分

      有最小值。

      的最小值是……………………12分

      18.解:

      (Ⅰ)設(shè)“一次取出3個球得4分”的事件記為A,它表示取出的球中有1個紅球和2個黑球的情況

      ……………………4分

      (Ⅱ)由題意,的可能取值為3、4、5、6。因為是有放回地取球,所以每次取到紅球的概率為……………………6分

      的分布列為

      3

      4

      5

      6

      P

      ……………………10分

      19.解:

      連接BD交AC于O,則BD⊥AC,

      連接A1O

      在△AA1O中,AA1=2,AO=1,

      ∠A1AO=60°

      ∴A1O2=AA12+AO2-2AA1?Aocos60°=3

      ∴AO2+A1O2=A12

      ∴A1O⊥AO,由于平面AA1C1C

      平面ABCD,

      所以A1O⊥底面ABCD

      ∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

      ……………………2分

      (Ⅰ)由于

      ∴BD⊥AA1……………………4分

        (Ⅱ)由于OB⊥平面AA1C1C

      ∴平面AA1C1C的法向量

      設(shè)⊥平面AA1D

      得到……………………6分

      所以二面角D―A1A―C的平面角的余弦值是……………………8分

      (Ⅲ)假設(shè)在直線CC1上存在點P,使BP//平面DA1C1

      設(shè)

      ……………………9分

      設(shè)

      設(shè)

      得到……………………10分

      又因為平面DA1C1

      ?

      即點P在C1C的延長線上且使C1C=CP……………………12分

      法二:在A1作A1O⊥AC于點O,由于平面AA1C­1C⊥平面

      ABCD,由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,

      又底面為菱形,所以AC⊥BD

    • <abbr id="yoq4q"></abbr>
    • <fieldset id="yoq4q"><tr id="yoq4q"></tr></fieldset>

      ……………………4分

      (Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

      ∴AO=AA1?cos60°=1

      所以O(shè)是AC的中點,由于底面ABCD為菱形,所以

      O也是BD中點

      由(Ⅰ)可知DO⊥平面AA1C

      過O作OE⊥AA1于E點,連接OE,則AA1⊥DE

      則∠DEO為二面角D―AA1―C的平面角

      ……………………6分

      在菱形ABCD中,AB=2,∠ABC=60°

      ∴AC=AB=BC=2

      ∴AO=1,DO=

      在Rt△AEO中,OE=OA?sin∠EAO=

      DE=

      ∴cos∠DEO=

      ∴二面角D―A1A―C的平面角的余弦值是……………………8分

      (Ⅲ)存在這樣的點P

      連接B1C,因為A1B1ABDC

      ∴四邊形A1B1CD為平行四邊形。

      ∴A1D//B1C

      在C1C的延長線上取點P,使C1C=CP,連接BP……………………10分

      因B­1­BCC1,……………………12分

      ∴BB1CP

      ∴四邊形BB1CP為平行四邊形

      則BP//B1C

      ∴BP//A1D

      ∴BP//平面DA1C1

      20.解:

      (Ⅰ)

      ……………………2分

      是增函數(shù)

      是減函數(shù)……………………4分

      ……………………6分

      (Ⅲ)(i)當時,,由(Ⅰ)知上是增函數(shù),在上是減函數(shù)

      ……………………7分

      又當時,所以的圖象在上有公共點,等價于…………8分

      解得…………………9分

      (ii)當時,上是增函數(shù),

      所以原問題等價于

      ∴無解………………11分

       

       

       

       

       

       

    • <nav id="yoq4q"></nav>