題目列表(包括答案和解析)
(04年上海卷)(16分)
如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)
(1) 證明:P-ABC為正四面體;
(2) 若PD=
PA, 求二面角D-BC-A的大;(結(jié)果用反三角函數(shù)值表示)
(3) 設(shè)棱臺DEF-ABC的體積為V, 是否存在體積為V且各棱長均相等的直
平行六面體,使得它與棱臺DEF-ABC有相同的棱長和? 若存在,請具體構(gòu)造
出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請說明理由.
![]()
(04年上海卷文)(18分)
設(shè)P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn), 且a1=
2, a2=
2, …, an=
2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列, 其中O是坐標(biāo)原點(diǎn). 記Sn=a1+a2+…+an.
(1) 若C的方程為
-y2=1,n=3. 點(diǎn)P1(3,0) 及S3=162, 求點(diǎn)P3的坐標(biāo);
(只需寫出一個(gè))
(2) 若C的方程為y2=2px(p≠0). 點(diǎn)P1(0,0), 對于給定的自然數(shù)n, 證明:
(x1+p)2, (x2+p)2, …,(xn+p)2成等差數(shù)列;
(3) 若C的方程為
(a>b>0). 點(diǎn)P1(a,0), 對于給定的自然數(shù)n, 當(dāng)公差d變化時(shí), 求Sn的最小值.
(04年上海卷理)(18分)
設(shè)P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn), 且a1=
2, a2=
2, …, an=
2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列, 其中O是坐標(biāo)原點(diǎn). 記Sn=a1+a2+…+an.
(1) 若C的方程為
=1,n=3. 點(diǎn)P1(3,0) 及S3=255, 求點(diǎn)P3的坐標(biāo);
(只需寫出一個(gè))
(2)若C的方程為
(a>b>0). 點(diǎn)P1(a,0), 對于給定的自然數(shù)n, 當(dāng)公差d變化時(shí), 求Sn的最小值;
. (3)請選定一條除橢圓外的二次曲線C及C上的一點(diǎn)P1,對于給定的自然數(shù)n,寫出符合條件的點(diǎn)P1, P2,…Pn存在的充要條件,并說明理由.
(04年上海卷)設(shè)奇函數(shù)f(x)的定義域?yàn)閇-5,5].若當(dāng)x∈[0,5]時(shí),
f(x)的圖象如右圖,則不等式f(x)<0的
解是 .
![]()
(04年上海卷)設(shè)拋物線的頂點(diǎn)坐標(biāo)為(2,0),準(zhǔn)線方程為x=-1,則它的焦點(diǎn)坐標(biāo)為 .
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com