題目列表(包括答案和解析)
在
中,內角A,B,C所對的分別是a,b,c。已知a=2,c=
,cosA=
.
(I)求sinC和b的值;
(II)求
的值。
【考點定位】本小題主要考查同角三角函數(shù)的基本關系、二倍角的正弦與余弦公式、兩角和余弦公式以及正弦定理、余弦定理等基礎知識,考查基本運算求解能力.
(本小題滿分10分)
中,
為邊
上的一點,
,
,
,求
.
【命題意圖】本試題主要考查同角三角函數(shù)關系、兩角和差公式和正弦定理在解三角形中的應用,考查考生對基礎知識、基本技能的掌握情況.
(本小題滿分10分)
中,
為邊
上的一點,
,
,
,求
.
【命題意圖】本試題主要考查同角三角函數(shù)關系、兩角和差公式和正弦定理在解三角形中的應用,考查考生對基礎知識、基本技能的掌握情況.
某興趣小組為了研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,分別到氣象站和醫(yī)院抄錄了1至6月份每月15日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性的回歸方程是否理想?
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關系是
,結合
,解得。
(2)由
,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數(shù)關系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com