題目列表(包括答案和解析)
已知
是拋物線
上的點,
是
的焦點, 以
為直徑的圓
與
軸的另一個交點為
.
(Ⅰ)求
與
的方程;
(Ⅱ)過點
且斜率大于零的直線
與拋物線
交于
兩點,
為坐標(biāo)原點,
的面積為
,證明:直線
與圓
相切.
已知
是拋物線
上的點,
是
的焦點, 以
為直徑的圓
與
軸的另一個交點為
.
(Ⅰ)求
與
的方程;
(Ⅱ)過點
且斜率大于零的直線
與拋物線
交于
兩點,
為坐標(biāo)原點,
的面積為
,證明:直線
與圓
相切.
已知
為拋物線
的焦點,
為坐標(biāo)原點.點
為拋物線上的任一點,過點
作拋物線的切線交
軸于點
,設(shè)
分別為直線
與直線
的斜率,則
.
已知
為拋物線
的焦點,
為坐標(biāo)原點。點
為拋物線上的任一點,過點
作拋物線的切線交
軸于點
,設(shè)
分別為直線
與直線
的斜率,則
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com