題目列表(包括答案和解析)
已知函數(shù)f(x)=cos(2x+
)+
-
+
sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,
],求f(x)的最值;
⑶ 若f(a)=
,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=
cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
第二問中,∵xÎ[0,
],∴2x-
Î[-
,
],
∴當(dāng)2x-
=-
,即x=0時,f(x)min=-
,
當(dāng)2x-
=
,
即x=
時,f(x)max=1
第三問中,(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=![]()
利用構(gòu)造角得到sin2a=sin[(2a-
)+
]
解:⑴ f(x)=
cos2x-
sin2x-cos2x+
sin2x ………2分
=
sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
……………………5分
∴ f(x)的減區(qū)間是[
+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0,
],∴2x-
Î[-
,
], ……………………7分
∴當(dāng)2x-
=-
,即x=0時,f(x)min=-
, ……………………8分
當(dāng)2x-
=
,
即x=
時,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-
)+
]
=sin(2a-
)·cos
+cos(2a-
)·sin
………12分
=
×
+
×
=![]()
已知f(x)是定義是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)0£x£1時,f(x)=
,則f(x)=
時,x的值為( )
A.4k+1(kÎZ) B.4k-1(kÎZ) C.4k+2(kÎZ) D.4k-2(kÎZ)
A.4k+1(kÎZ) B.4k-1(kÎZ) C.4k+2(kÎZ) D.4k-2(kÎZ)
(本題14分)閱讀:設(shè)Z點的坐標(biāo)(a, b),r=|
|,θ是以x軸的非負(fù)半軸為始邊、以OZ所在的射線為終邊的角,復(fù)數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個表達(dá)式叫做復(fù)數(shù)z的三角形式,其中,r叫做復(fù)數(shù)z的模,當(dāng)r≠0時,θ叫做復(fù)數(shù)z的幅角,復(fù)數(shù)0的幅角是任意的,當(dāng)0≤θ<2π時,θ叫做復(fù)數(shù)z的幅角主值,記作argz.
根據(jù)上面所給出的概念,請解決以下問題:
(1)設(shè)z=a+bi =r(cosθ+isinθ) (a、bÎR,r≥0),請寫出復(fù)數(shù)的三角形式與代數(shù)形式相互之間的轉(zhuǎn)換關(guān)系式;
(2)設(shè)z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復(fù)數(shù)乘法、除法的運算法則,請寫出三角形式下的復(fù)數(shù)乘法、除法的運算法則.(結(jié)論不需要證明)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com