題目列表(包括答案和解析)
如圖,已知⊙
中,直徑
垂直于弦
,垂足為
,
是
延長(zhǎng)線上一點(diǎn),
切⊙
于點(diǎn)
,連接
交
于點(diǎn)
,證明:![]()
![]()
【解析】本試題主要考查了直線與圓的位置關(guān)系的運(yùn)用。要證明角相等,一般運(yùn)用相似三角形來(lái)得到,或者借助于弦切角定理等等。根據(jù)
為⊙
的切線,∴
為弦切角
連接
∴
…注意到
是直徑且垂直弦
,所以
且
…利用
,可以證明。
解:∵
為⊙
的切線,∴
為弦切角
連接
∴
……………………4分
又∵
是直徑且垂直弦
∴
且
……………………8分
∴
∴ ![]()
如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且
.
(Ⅰ)求證:CN∥平面AMB1;
(Ⅱ)求證: B1M⊥平面AMG.
![]()
【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問(wèn)中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明
第二問(wèn)中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。
解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分
![]()
![]()
∵CM
,NP
,∴CM
NP, …………2分
∴CNPM是平行四邊形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奐 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
設(shè):AC=2a,則![]()
…………………………8分
同理,
…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
![]()
………………………………10分
![]()
如圖所示,四面體
被一平面所截,截面
是一個(gè)平行四邊形.求證:
;
![]()
【答案】(理)證明:
EH∥FG,EH
面
,
面![]()
EH∥面
,又
CD
面
,
EH∥CD, 又EH
面EFGH,CD
面EFGH
EH∥BD
【解析】本試題主要是考查了空間四面體中線面位置關(guān)系的判定。
要證明線面平行可知通過(guò)線線平行,結(jié)合判定定理得到結(jié)論。
已知平面四邊形
的對(duì)角線
交于點(diǎn)
,
,且
,
,
.現(xiàn)沿對(duì)角線
將三角形
翻折,使得平面
平面
.翻折后:
(Ⅰ)證明:
;(Ⅱ)記
分別為
的中點(diǎn).①求二面角
大小的余弦值;
②求點(diǎn)
到平面
的距離
![]()
【解析】本試題主要考查了空間中點(diǎn)、線、面的位置關(guān)系的綜合運(yùn)用。以及線線垂直和二面角的求解的立體幾何試題運(yùn)用。
設(shè)橢圓E:
(a,b>0)過(guò)M(2,
) ,N(
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且
?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com