題目列表(包括答案和解析)
在
中,滿足
,
是
邊上的一點(diǎn).
(Ⅰ)若
,求向量
與向量
夾角的正弦值;
(Ⅱ)若
,
=m (m為正常數(shù)) 且
是
邊上的三等分點(diǎn).,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求
第二問因為
,
=m所以
,![]()
(1)當(dāng)
時,則
=
(2)當(dāng)
時,則
=![]()
第三問中,解:設(shè)
,因為![]()
,
;
所以
即
于是
得![]()
從而![]()
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為
,
=m所以
,![]()
(1)當(dāng)
時,則
=
;-2分
(2)當(dāng)
時,則
=
;--2分
(Ⅲ)解:設(shè)
,因為![]()
,
;
所以
即
于是
得![]()
從而
---2分
=
=![]()
=
…………………………………2分
令
,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時,![]()
如圖,在三棱柱
中,
側(cè)面
,
為棱
上異于
的一點(diǎn),
,已知
,求:
(Ⅰ)異面直線
與
的距離;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標(biāo)系
解:(I)以B為原點(diǎn),
、
分別為Y,Z軸建立空間直角坐標(biāo)系.由于,![]()
![]()
在三棱柱
中有
,
設(shè)![]()
![]()
![]()
又
側(cè)面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有
故二面角
的平面角
的大小為向量
與
的夾角.
![]()
平面直角坐標(biāo)系內(nèi)的向量都可以用一有序?qū)崝?shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設(shè)直線
l的傾斜角為α(α≠90°).在l上任取兩個不同的點(diǎn)這就是《數(shù)學(xué)
2》中已經(jīng)得到的斜率公式.上述推導(dǎo)過程比《數(shù)學(xué)2》中的推導(dǎo)簡捷.你能用向量作為工具討論一下直線的有關(guān)問題嗎?例如:(1)
過點(diǎn)(2)
向量(A,B)與直線(3)
設(shè)直線![]()
![]()
那么,
(4)
點(diǎn)![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com