題目列表(包括答案和解析)
C
[解析] 由題意知a·b=4(x-1)+2y=0,∴2x+y=2,∴9x+3y=32x+3y≥2
=6,等號(hào)成立時(shí),x=
,y=2,故選C.
解析:由題意知
當(dāng)-2≤x≤1時(shí),f(x)=x-2,
當(dāng)1<x≤2時(shí),f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數(shù),
∴f(x)的最大值為f(2)=23-2=6.
答案:C
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線(xiàn)AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時(shí)
單調(diào)遞減;當(dāng)
時(shí)
單調(diào)遞增,故當(dāng)
時(shí),
取最小值![]()
于是對(duì)一切
恒成立,當(dāng)且僅當(dāng)
. 、
令
則![]()
當(dāng)
時(shí),
單調(diào)遞增;當(dāng)
時(shí),
單調(diào)遞減.
故當(dāng)
時(shí),
取最大值
.因此,當(dāng)且僅當(dāng)
時(shí),①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線(xiàn),所以存在
使
即
成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出
取最小值
對(duì)一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿(mǎn)足異面直線(xiàn)BE與CD所成的角為30°,求AE的長(zhǎng).
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線(xiàn)必與線(xiàn)段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線(xiàn)BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
已知m>1,直線(xiàn)
,橢圓C:
,
、
分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線(xiàn)過(guò)右焦點(diǎn)
時(shí),求直線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓C交于A(yíng)、B兩點(diǎn),△A![]()
、△B![]()
的重心分別為G、H.若原點(diǎn)O在以線(xiàn)段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[
【解析】第一問(wèn)中因?yàn)橹本(xiàn)
經(jīng)過(guò)點(diǎn)
(
,0),所以
=
,得
.又因?yàn)閙>1,所以
,故直線(xiàn)的方程為![]()
第二問(wèn)中設(shè)
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點(diǎn).由
可知
從而
,設(shè)M是GH的中點(diǎn),則M(
).
由題意可知,2|MO|<|GH|,得到范圍
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com