題目列表(包括答案和解析)
如圖1,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于點(diǎn)A、點(diǎn)B,與y軸交于點(diǎn)C,且A、B兩點(diǎn)的坐標(biāo)分別是(4,0)、(0,-2),tan∠BCO=
(1)求拋物線解析式;(2)點(diǎn)M為拋物線上一點(diǎn),若以MB為直徑的圓與直線BC相切于點(diǎn)B,求點(diǎn)M的坐標(biāo);(3) 如圖2,若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x的動(dòng)點(diǎn),是否存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形;如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由.
![]()
【解析】(1)利用A、B兩點(diǎn)的坐標(biāo)和tan∠BCO=
求拋物線解析式
(2)設(shè)點(diǎn)m(x,y),則由以MB為直徑的圓與直線BC相切于點(diǎn)B,說明了點(diǎn)B為直徑的一個(gè)端點(diǎn),另外,BC直線方程為y=2x+4,利用BM的中點(diǎn)就是圓心坐標(biāo),BM垂直于CB,因此聯(lián)立方程組可得M的坐標(biāo)
(3)假設(shè)存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形
則有幾種情況的一種直角為C,直角為P,直角為O,直角為Q的情況,那么分情況討論求解,利用一組對(duì)邊平行,一個(gè)角為直角,進(jìn)行求解
如圖1,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于點(diǎn)A、點(diǎn)B,與y軸交于點(diǎn)C,且A、B兩點(diǎn)的坐標(biāo)分別是(4,0)、(0,-2),tan∠BCO=
(1)求拋物線解析式;(2)點(diǎn)M為拋物線上一點(diǎn),若以MB為直徑的圓與直線BC相切于點(diǎn)B,求點(diǎn)M的坐標(biāo);(3) 如圖2,若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x的動(dòng)點(diǎn),是否存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形;如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由.
![]()
【解析】(1)利用A、B兩點(diǎn)的坐標(biāo)和tan∠BCO=
求拋物線解析式
(2)設(shè)點(diǎn)m(x,y),則由以MB為直徑的圓與直線BC相切于點(diǎn)B,說明了點(diǎn)B為直徑的一個(gè)端點(diǎn),另外,BC直線方程為y=2x+4,利用BM的中點(diǎn)就是圓心坐標(biāo),BM垂直于CB,因此聯(lián)立方程組可得M的坐標(biāo)
(3)假設(shè)存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形
則有幾種情況的一種直角為C,直角為P,直角為O,直角為Q的情況 ,那么分情況討論求解,利用一組對(duì)邊平行,一個(gè)角為直角,進(jìn)行求解
如圖1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過以下計(jì)算:由題意,∠B=30°,∠C=90°,c=2b,a=
b,得a2-b2=(
b)2-b2=2b2=b?c.即a2-b2= bc.
于是,小明猜測(cè):對(duì)于任意的ΔABC,當(dāng)∠A=2∠B時(shí),關(guān)系式a2-b2=bc都成立.
(1)如圖2,請(qǐng)你用以上小明的方法,對(duì)等腰直角三角形進(jìn)行驗(yàn)證,判斷小明的猜測(cè)是否正確,并寫出驗(yàn)證過程;
(2)如圖3,你認(rèn)為小明的猜想是否正確,若認(rèn)為正確,請(qǐng)你證明;否則,請(qǐng)說明理由;
(3)若一個(gè)三角形的三邊長(zhǎng)恰為三個(gè)連續(xù)偶數(shù),且∠A=2∠B,請(qǐng)直接寫出這個(gè)三角形三邊的長(zhǎng),不必說明理由.
![]()
若|x|=|-2|,則x=________;若m<0,且|m|=
,則m=_____.
若|x|=|-2|,則x=________;若m<0,且|m|=
,則m=_____.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com