欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

令, 所以當(dāng)或時(shí)存在反函數(shù), 即或時(shí)存在反函數(shù), ①當(dāng)時(shí), 即 ②當(dāng)時(shí), 即 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因?yàn)?<a<2,所以,.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">.           ………………………1分

.                            

,則,所以.  ……………………3分          

因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.                            

,則,所以

因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因?yàn)?<a<2,所以.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當(dāng),即時(shí),            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當(dāng),即時(shí),在區(qū)間上為減函數(shù).

所以.               

綜上所述,當(dāng)時(shí),

當(dāng)時(shí),

 

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時(shí),極大值為,無極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

求導(dǎo),得

    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(,

 

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

若方程x2+(m-2)x-m+5=0的兩個(gè)根都大于2,求實(shí)數(shù)m的取值范圍.

閱讀下面的解法,回答提出的問題.

解:第一步,令判別式Δ=(m-2)2-4(-m+5)≥0,

解得m≥4或m≤-4;

第二步,設(shè)兩根為x1,x2,由x1>2,x2>2得

,所以

所以m<-2.

第三步,由得m≤-4.

第四步,由第三步得出結(jié)論.

當(dāng)m∈(-∞,-4]時(shí),此方程兩根均大于2.

但當(dāng)取m=-6檢驗(yàn)知,方程x2-8x+11=0兩根為x=4±,其中4-<2.

試問:產(chǎn)生錯(cuò)誤的原因是什么?

查看答案和解析>>


同步練習(xí)冊答案