題目列表(包括答案和解析)
(本小題滿分12分) 海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié)每天從0時(shí)至24時(shí)的時(shí)間
(單位:時(shí))與水深y(單位:米)的關(guān)系表:
|
| 0:00 | 3:00 | 6:00 | 9: 00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
|
| 12.0 | 15.0 | 12.0 | 9.0 | 12.0 | 15.0 | 12.0 | 9.0 | 12.0 |
(1)請(qǐng)選用一個(gè)函數(shù)來(lái)近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系;
(2)一條貨輪的吃水深度(船體最低點(diǎn)與水面的距離)為12米,安全條例規(guī)定船體最低點(diǎn)與
洋底間隙至少要有1.5米,請(qǐng)問(wèn)該船何時(shí)能進(jìn)出港口?在港口最多能停留多長(zhǎng)時(shí)間?
| 3 | 4 |
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負(fù)數(shù)
和正數(shù)
,且對(duì)任意的正整數(shù)n,當(dāng)
≥0時(shí), 有[
,
]=
[
,
];當(dāng)
<0時(shí), 有[
,
]= [
, ![]()
].
(1)求證數(shù)列{
}是等比數(shù)列;
(2)若
,求證![]()
;
(3)是否存在
,使得數(shù)列
為常數(shù)數(shù)列?請(qǐng)說(shuō)明理由
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形
中,已知過(guò)點(diǎn)
的直線與線段
分別相交于點(diǎn)
。若
。
(1)求證:
與
的關(guān)系為
;
(2)設(shè)
,定義函數(shù)
,點(diǎn)列
在函數(shù)
的圖像上,且數(shù)列
是以首項(xiàng)為1,公比為
的等比數(shù)列,
為原點(diǎn),令
,是否存在點(diǎn)![]()
,使得
?若存在,請(qǐng)求出
點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(3)設(shè)函數(shù)
為
上偶函數(shù),當(dāng)
時(shí)
,又函數(shù)
圖象關(guān)于直線
對(duì)稱, 當(dāng)方程
在
上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)
的取值范圍。
(本題滿分18分,第1小題6分,第2小題6分,第3小題6分)
對(duì)于定義在D上的函數(shù)
,若同時(shí)滿足
(Ⅰ)存在閉區(qū)間
,使得任取
,都有
是常數(shù));
(Ⅱ)對(duì)于D內(nèi)任意
,當(dāng)
時(shí)總有
,則稱
為“平底型”函數(shù)。
(1)判斷
是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)設(shè)
是(1)中的“平底型”函數(shù),若
,對(duì)一切
恒成立,求實(shí)數(shù)
的范圍;
(3)若
是“平底型”函數(shù),求
和
滿足的條件,并說(shuō)明理由。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com