欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

向量的運算律:(1)交換律:..,(2)結(jié)合律:.,(3)分配律:..如下列命題中:① ,② ,③ ,④ 若.則或,⑤若則,⑥,⑦,⑧,⑨.其中正確的是 提醒:(1)向量運算和實數(shù)運算有類似的地方也有區(qū)別:對于一個向量等式.可以移項.兩邊平方.兩邊同乘以一個實數(shù).兩邊同時取模.兩邊同乘以一個向量.但不能兩邊同除以一個向量.即兩邊不能約去一個向量.切記兩向量不能相除向量的“乘法 不滿足結(jié)合律.即.為什么? 查看更多

 

題目列表(包括答案和解析)

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
,
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
,
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=
(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=
(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

材料:采訪零向量

  W:你好!零向量.我是《數(shù)學(xué)天地》的一名記者,為了讓在校的高中生更好了解你,能不能對你進(jìn)行一次采訪呢?

  零向量:當(dāng)然可以,我們向量王國隨時恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務(wù).

  W:好的,那就開始吧!你的名字有什么特殊的含義嗎?

  零向量:零向量就是長度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.

  W:你與其他向量有什么共同之處呢?

  零向量:既然我是向量王國的一個成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進(jìn)行加、減法運算時滿足交換律和結(jié)合律,還定義了與實數(shù)的積.

  W:你有哪些值得驕傲的特殊榮耀呢?

  零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運算中,我與實數(shù)0很有相似之處.

  W:你有如此多的榮耀,那么是否還有煩惱之事呢?

  零向量:當(dāng)然有了,在向量王國還有許多“權(quán)利和義務(wù)”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對我進(jìn)行了限制.所有這些確實給一些高中生帶來了很多苦惱,在此我向大家真誠地說一聲:對不起,這不是我的錯.但我還是很高興有這次機(jī)會與大家見面.

  W:OK!采訪就到這里吧,非常感謝你的合作,再見!

  零向量:Bye!

閱讀上面的材料回答下面問題.

應(yīng)用零向量時應(yīng)注意哪些問題?

查看答案和解析>>


同步練習(xí)冊答案