題目列表(包括答案和解析)
已知函數(shù)f(x)(x∈R)滿足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=
,an+1=f(an),bn=
-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數(shù)列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
設(shè)拋物線
:
(
>0)的焦點(diǎn)為
,準(zhǔn)線為
,
為
上一點(diǎn),已知以
為圓心,
為半徑的圓
交
于
,
兩點(diǎn).
(Ⅰ)若
,
的面積為
,求
的值及圓
的方程;
(Ⅱ)若
,
,
三點(diǎn)在同一條直線
上,直線
與
平行,且
與
只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到
,
距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運(yùn)算求解能力.
【解析】設(shè)準(zhǔn)線
于
軸的焦點(diǎn)為E,圓F的半徑為
,
![]()
則|FE|=
,
=
,E是BD的中點(diǎn),
(Ⅰ) ∵
,∴
=
,|BD|=
,
設(shè)A(
,
),根據(jù)拋物線定義得,|FA|=
,
∵
的面積為
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圓F的方程為:
;
(Ⅱ) 解析1∵
,
,
三點(diǎn)在同一條直線
上, ∴
是圓
的直徑,
,
由拋物線定義知
,∴
,∴
的斜率為
或-
,
∴直線
的方程為:
,∴原點(diǎn)到直線
的距離
=
,
設(shè)直線
的方程為:
,代入
得,
,
∵
與
只有一個(gè)公共點(diǎn),
∴
=
,∴
,
∴直線
的方程為:
,∴原點(diǎn)到直線
的距離
=
,
∴坐標(biāo)原點(diǎn)到
,
距離的比值為3.
解析2由對稱性設(shè)
,則![]()
點(diǎn)
關(guān)于點(diǎn)
對稱得:![]()
得:
,直線![]()
切點(diǎn)![]()
直線![]()
坐標(biāo)原點(diǎn)到
距離的比值為![]()
先閱讀理解下面的例題,再按要求解答:
例題:解一元二次不等式
.
解:∵
,
∴
.
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有
(1)
(2)![]()
解不等式組(1),得
,
解不等式組(2),得
,w.w.w.k.s.5.u.c.o.m
![]()
故
的解集為
或
,
即一元二次不等式
的解集為
或
.
已知函數(shù)
,數(shù)列
的項(xiàng)滿足:
,(1)試求![]()
(2) 猜想數(shù)列
的通項(xiàng),并利用數(shù)學(xué)歸納法證明.
【解析】第一問中,利用遞推關(guān)系
, ![]()
, ![]()
第二問中,由(1)猜想得:
然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(數(shù)學(xué)歸納法證明)i)
,
,命題成立
ii) 假設(shè)
時(shí),
成立
則
時(shí),![]()
![]()
![]()
綜合i),ii) :
成立
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com