題目列表(包括答案和解析)
一自來(lái)水廠用蓄水池通過(guò)管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計(jì)劃在當(dāng)日每小時(shí)向蓄水池注入水2千噸,且每
小時(shí)通過(guò)管道向所管轄區(qū)域供水
千噸.
(1)多少小時(shí)后,蓄水池存水量最少?
(2)當(dāng)蓄水池存水量少于3千噸時(shí),供水就會(huì)出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時(shí)間有多長(zhǎng)?
【解析】第一問(wèn)中(1)設(shè)
小時(shí)后,蓄水池有水
千噸.依題意,
當(dāng)
,即
(小時(shí))時(shí),蓄水池的水量最少,只有1千噸
第二問(wèn)依題意,
解得:![]()
解:(1)設(shè)
小時(shí)后,蓄水池有水
千噸.………………………………………1分
依題意,
…………………………………………4分
當(dāng)
,即
(小時(shí))時(shí),蓄水池的水量最少,只有1千噸. ………2分
(2)依題意,
………………………………………………3分
解得:
. …………………………………………………………………3分
所以,當(dāng)天有8小時(shí)會(huì)出現(xiàn)供水緊張的情況
設(shè)
是兩個(gè)不共線的非零向量.
(1)若
=
,
=
,
=
,求證:A,B,D三點(diǎn)共線;
(2)試求實(shí)數(shù)k的值,使向量
和
共線. (本小題滿分13分)
【解析】第一問(wèn)利用
=(
)+(
)+
=
=
得到共線問(wèn)題。
第二問(wèn),由向量
和
共線可知
存在實(shí)數(shù)
,使得
=
(
)
=
,結(jié)合平面向量基本定理得到參數(shù)的值。
解:(1)∵
=(
)+(
)+![]()
=
=
……………3分
∴
……………5分
又∵
∴A,B,D三點(diǎn)共線 ……………7分
(2)由向量
和
共線可知
存在實(shí)數(shù)
,使得
=
(
)
……………9分
∴
=
……………10分
又∵
不共線
∴
……………12分
解得![]()
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對(duì)任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問(wèn)中,若對(duì)任意
不等式
恒成立,問(wèn)題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對(duì)任意
不等式
恒成立,
問(wèn)題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問(wèn)題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
已知冪函數(shù)
滿足
。
(1)求實(shí)數(shù)k的值,并寫(xiě)出相應(yīng)的函數(shù)
的解析式;
(2)對(duì)于(1)中的函數(shù)
,試判斷是否存在正數(shù)m,使函數(shù)
,在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問(wèn)中利用,冪函數(shù)
滿足
,得到![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為![]()
(2)由(1)知,
,
,因此拋物線開(kāi)口向下,對(duì)稱(chēng)軸方程為:
,結(jié)合二次函數(shù)的對(duì)稱(chēng)軸,和開(kāi)口求解最大值為5.,得到![]()
(1)對(duì)于冪函數(shù)
滿足
,
因此
,解得
,………………3分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時(shí),
,
當(dāng)k=1時(shí),
,綜上所述,k的值為0或1,
。………………6分
(2)函數(shù)
,………………7分
由此要求
,因此拋物線開(kāi)口向下,對(duì)稱(chēng)軸方程為:
,
當(dāng)
時(shí),
,因?yàn)樵趨^(qū)間
上的最大值為5,
所以
,或
…………………………………………10分
解得
滿足題意
求圓心在直線y=-2x上,并且經(jīng)過(guò)點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r=
=
,
故所求圓的方程為:
+
=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圓的方程為:
+
=2
………………………12分
法二:由條件設(shè)所求圓的方程為:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圓的方程為:
+
=2
………………………12分
其它方法相應(yīng)給分
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com