題目列表(包括答案和解析)
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)
時,求證:
;
(Ⅱ)若
邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,![]()
![]()
又因為
,
………………2分
又
,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得![]()
由此知道a=2, 設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當(dāng)
時,底面ABCD為正方形,![]()
![]()
又因為
,
又![]()
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2,
設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
| HP |
| PM |
| PM |
| 3 |
| 2 |
| MQ |
| x2 |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù)
,
,及任意的
,當(dāng)甲公司投入
萬元作宣傳時,乙公司投入的宣傳費若小于
萬元,則乙公司有失敗的危險,否則無失敗的危險;當(dāng)乙公司投入
萬元作宣傳時,甲公司投入的宣傳費若小于
萬元,則甲公司有失敗的危險,否則無失敗的危險. 設(shè)甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標(biāo)系,試回答以下問題:
(1)請解釋
;
(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應(yīng)投入多少宣傳費?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據(jù)對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入
萬元,乙在上述策略下,投入最少費用
;而甲根據(jù)乙的情況,調(diào)整宣傳費為
;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費為![]()
如此得當(dāng)甲調(diào)整宣傳費為
時,乙調(diào)整宣傳費為
;試問是否存在
,
的值,若存在寫出此極限值(不必證明),若不存在,說明理由.
甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù)
,
,及任意的
,當(dāng)甲公司投入
萬元作宣傳時,乙公司投入的宣傳費若小于
萬元,則乙公司有失敗的危險,否則無失敗的危險;當(dāng)乙公司投入
萬元作宣傳時,甲公司投入的宣傳費若小于
萬元,則甲公司有失敗的危險,否則無失敗的危險. 設(shè)甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標(biāo)系,試回答以下問題:
(1)請解釋
;w.w.w.k.s.5.u.c.o.m
(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應(yīng)投入多少宣傳費?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據(jù)對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入
萬元,乙在上述策略下,投入最少費用
;而甲根據(jù)乙的情況,調(diào)整宣傳費為
;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費為![]()
如此得當(dāng)甲調(diào)整宣傳費為
時,乙調(diào)整宣傳費為
;試問是否存在
,
的值,若存在寫出此極限值(不必證明),若不存在,說明理由.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com