題目列表(包括答案和解析)
為了了解某市工人開展體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進(jìn)行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠
(Ⅰ)從A,B,C區(qū)中分別抽取的工廠個數(shù);
(Ⅱ)若從抽取的7個工廠中隨機(jī)抽取2個進(jìn)行調(diào)查結(jié)果的對比,計(jì)算這2個工廠中至少有1個來自A區(qū)的概率.
【解析】本試題主要考查了統(tǒng)計(jì)和概率的綜合運(yùn)用。
第一問工廠總數(shù)為18+27+18=63,樣本容量與總體中的個體數(shù)比為7/63=1/9…3分
所以從A,B,C三個區(qū)中應(yīng)分別抽取的工廠個數(shù)為2,3,2。
第二問設(shè)A1,A2為在A區(qū)中的抽得的2個工廠,B1,B2,B3為在B區(qū)中抽得的3個工廠,
C1,C2為在C區(qū)中抽得的2個工廠。
這7個工廠中隨機(jī)的抽取2個,全部的可能結(jié)果有1/2*7*6=32種。
隨機(jī)的抽取的2個工廠至少有一個來自A區(qū)的結(jié)果有A1,A2),A1,B2),A1,B1),
A1,B3)A1,C2),A1,C1), …………9分
同理A2還能給合5種,一共有11種。
所以所求的概率為p=11/21
已知
,
是橢圓![]()
左右焦點(diǎn),它的離心率
,且被直線
所截得的線段的中點(diǎn)的橫坐標(biāo)為![]()
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)
是其橢圓上的任意一點(diǎn),當(dāng)
為鈍角時,求
的取值范圍。
【解析】解:因?yàn)榈谝粏栔,利用橢圓的性質(zhì)由
得
所以橢圓方程可設(shè)為:
,然后利用
得
得
橢圓方程為![]()
第二問中,當(dāng)
為鈍角時,
,
得![]()
所以
得![]()
解:(Ⅰ)由
得
所以橢圓方程可設(shè)為:![]()
3分
得
得
橢圓方程為
3分
(Ⅱ)當(dāng)
為鈍角時,
,
得
3分
所以
得![]()
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)
(0,1), 問是否存在直線
與橢圓
交于
兩點(diǎn),且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
第二問中,
假設(shè)存在這樣的直線
,設(shè)
,MN的中點(diǎn)為![]()
因?yàn)閨ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
(Ⅱ) 假設(shè)存在這樣的直線
,設(shè)
,MN的中點(diǎn)為![]()
因?yàn)閨ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得
……② ……………………9分
則
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
綜上(i)(ii)可知,存在這樣的直線
,其斜率k的取值范圍是![]()
| x2 |
| 2b2 |
| y2 |
| b2 |
| 1 |
| 8 |
| AP |
| PB |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com