題目列表(包括答案和解析)
過(guò)拋物線![]()
![]()
的對(duì)稱軸上的定點(diǎn)
,作直線
與拋物線相交于
兩點(diǎn).
(I)試證明
兩點(diǎn)的縱坐標(biāo)之積為定值;
(II)若點(diǎn)
是定直線
上的任一點(diǎn),試探索三條直線
的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.
(1)中證明:設(shè)
下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得
![]()
(2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=
,直線BN的斜率KBN=![]()
![]()
KAN+KBN=
+![]()
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.
如圖,在四棱錐
中,
⊥底面
,底面
為正方形,
,
,
分別是
,
的中點(diǎn).
(I)求證:
平面
;
(II)求證:
;
(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.
![]()
【解析】第一問(wèn)利用線面平行的判定定理,
,得到![]()
第二問(wèn)中,利用![]()
,所以![]()
又因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,
,從而得![]()
第三問(wèn)中,借助于等體積法來(lái)求解三棱錐B-EFC的體積.
(Ⅰ)證明:![]()
分別是
的中點(diǎn), ![]()
,
. …4分
(Ⅱ)證明:
四邊形
為正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴![]()
![]()
設(shè)函數(shù)f(x)=lnx,g(x)=ax+
,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?啤>W(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,g(x)=ax+![]()
則其導(dǎo)數(shù)為![]()
由題意得,![]()
第二問(wèn),由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)
時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+![]()
則其導(dǎo)數(shù)為![]()
由題意得,![]()
(11)由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)
時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有![]()
在邊長(zhǎng)為
的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.
(I)判別MN與平面AEF的位置關(guān)系,并給出證明;
(II)求多面體E-AFMN的體積.
![]()
【解析】第一問(wèn)因翻折后B、C、D重合(如下圖),所以MN應(yīng)是
的一條中位線,則利用線線平行得到線面平行。
第二問(wèn)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091227575151928240_ST.files/image005.png">平面BEF,……………8分
且
,
∴
,又
∴![]()
(1)因翻折后B、C、D重合(如圖),
![]()
所以MN應(yīng)是
的一條中位線,………………3分
則
.………6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091227575151928240_ST.files/image005.png">平面BEF,……………8分
且
,
∴
,………………………………………10分
又
∴![]()
設(shè)函數(shù)
.
(I)求
的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時(shí),求函數(shù)
在區(qū)間
上的最小值.
【解析】第一問(wèn)定義域?yàn)檎鏀?shù)大于零,得到
.
.
令
,則
,所以
或
,得到結(jié)論。
第二問(wèn)中,
(
).
.
因?yàn)?<a<2,所以
,
.令
可得
.
對(duì)參數(shù)討論的得到最值。
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">. ………………………1分
.
令
,則
,所以
或
. ……………………3分
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以
.
令
,則
,所以
.
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為
,
單調(diào)遞減區(qū)間為
.
………………………7分
(II)
(
).
.
因?yàn)?<a<2,所以
,
.令
可得
.…………9分
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
①當(dāng)
,即
時(shí),
在區(qū)間
上,
在
上為減函數(shù),在
上為增函數(shù).
所以
. ………………………10分
②當(dāng)
,即
時(shí),
在區(qū)間
上為減函數(shù).
所以
.
綜上所述,當(dāng)
時(shí),
;
當(dāng)
時(shí),![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com