題目列表(包括答案和解析)
| 3 |
| 3 |
|
| 2 |
| π |
| 4 |
|
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
在△ABC中,
為三個(gè)內(nèi)角
為三條邊,
且![]()
(I)判斷△ABC的形狀;
(II)若
,求
的取值范圍.
【解析】本題主要考查正余弦定理及向量運(yùn)算
第一問利用正弦定理可知,邊化為角得到![]()
![]()
所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。
第二問中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,則A=C,∴
是等腰三角形。
(2)
![]()
|
| x2 |
| 4 |
|
| π |
| 2 |
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com