題目列表(包括答案和解析)
| 10-x |
| 10+x |
| 10-x |
| 10+x |
已知函數(shù)
的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說明理由.
【解析】第一問當(dāng)
時(shí),
,則
。
依題意得:
,即
解得
第二問當(dāng)
時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)
時(shí),
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時(shí),
,令
得![]()
當(dāng)
變化時(shí),
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當(dāng)
時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)
時(shí),
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時(shí)
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實(shí)數(shù)
,曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
仔細(xì)閱讀下面問題的解法:
設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2. ∴實(shí)數(shù)a的取值范圍為a<2.
研究學(xué)習(xí)以上問題的解法,請解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=
,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
(3)若B ={x|
>2x+a–5},且對于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。
設(shè)函數(shù)f(x)=
在[1,+∞
上為增函數(shù).
(1)求正實(shí)數(shù)a的取值范圍;
(2)比較
的大小,說明理由;
(3)求證:
(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:
,依題意得:
≥0對x∈[1,+∞
恒成立
∴ax-1≥0對x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上為增函數(shù),
∴n≥2時(shí):f(
)=
(3) ∵
∴![]()
如圖,
是△
的重心,
、
分別是邊
、
上的動點(diǎn),且
、
、
三點(diǎn)共線.
(1)設(shè)
,將
用
、
、
表示;
(2)設(shè)
,
,證明:
是定值;
(3)記△
與△
的面積分別為
、
.求
的取值范圍.
(提示:![]()
![]()
【解析】第一問中利用(1)![]()
![]()
第二問中,由(1),得
;①
另一方面,∵
是△
的重心,
∴![]()
而
、
不共線,∴由①、②,得![]()
第三問中,![]()
由點(diǎn)
、
的定義知
,
,
且
時(shí),
;
時(shí),
.此時(shí),均有
.
時(shí),
.此時(shí),均有
.
以下證明:
,結(jié)合作差法得到。
解:(1)![]()
.
(2)一方面,由(1),得
;①
另一方面,∵
是△
的重心,
∴
. ②
而
、
不共線,∴由①、②,得
解之,得
,∴
(定值).
(3)
.
由點(diǎn)
、
的定義知
,
,
且
時(shí),
;
時(shí),
.此時(shí),均有
.
時(shí),
.此時(shí),均有
.
以下證明:
.(法一)由(2)知
,
∵
,∴
.
∵
,∴
.
∴
的取值范圍![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com